Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Influenza di alcuni aspetti ambientali sul contenuto di stilbeni nel vino nell’area della DOC “Sangiovese di Romagna” (Italia)

Influenza di alcuni aspetti ambientali sul contenuto di stilbeni nel vino nell’area della DOC “Sangiovese di Romagna” (Italia)

Abstract

[English version below]

Nell’ambito della zonazione della Doc “Sangiovese di Romagna” sono stati descritti 25 siti sperimentali, aventi diversa origine geologica, in cui è stato individuato un vigneto omogeneo per la determinazione dei principali parametri viticoli ed enologici. In seguito è stato analizzato il contenuto di stilbeni nei vini al fine di approfondirne il legame con le caratteristiche geopedologiche. Lo studio descrive la relazione positiva tra l’altitudine e il contenuto di trans-piceide nelle province di Forlì e Ravenna e di trans-resveratrolo a Ravenna. I suoli con maggiore calcare attivo hanno fornito vini più ricchi in stilbeni.

The “Sangiovese di Romagna” zoning characterized 25 sites, based on a different geological origin. For each site, a representative commercial vineyard was chosen and the main viticultural and oenological parameters were recorded. The wine stilbene content was analyzed to investigate the effect of the geological origin and the soil composition. Positive relations between site elevation and trans-resveratrol and site elevation and trans-piceid were observed in the Ravenna and, Forlì and Ravenna area, respectively. The higher the active lime in the soils the richer the stilbenes in the wines.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Matteo GATTI (1,2), Silvia CIVARDI (2), Maurizio ZAMBONI (2), Luigi BAVARESCO (2), Federico FERRARI (3), Stefano RAIMONDI (4), Marco SIMONI (5), Driss ELOTHMANI (1), Frédérique JOURJON (1)

1) Laboratoire GRAPPE, Ecole Supérieure d’Agriculture
55 rue Rabelais, B.P. 30748, 49007 Angers Cedex 01, France
(2) Istituto di Frutti-Viticoltura, Università Cattolica del Sacro Cuore
Via E. Parmense 84, 29199 Piacenza, Italia
(3) Istituto di Chimica Agraria e Ambientale, Università Cattolica del Sacro Cuore
Via E. Parmense 84, 29199 Piacenza, Italia
(4) I.TER Soc. coop.
Via Brugnoli 11, 40122 Bologna, Italia
(5) ASTRA Innovazione e Sviluppo s.r.l.
Via Tebano 45, 48018 Faenza (RA), Italia

Contact the author

Keywords

Formazione geologica, Calcare attivo, Stilbeni, Sangiovese
Geology, Active lime, Stilbenes, Sangiovese

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Use of glutathione and a selected strain of metschnikowia pulcherrima as alternatives to sulphur dioxide to inhibit natural tyrosinase of grape must and prevent browning

The enzymatic browning of grape must is still a major problem in oenology today [1] being particularly serious when the grapes have been infected by grey rot [2]. Browning is an oxidation process that causes certain foods to turn brown, which often leads to them being rejected by consumers [3]. This is a particular problem in the case of wine, because grape must is very vulnerable to enzymatic browning [4].

Natural variability and vine-growers behaviour

Le vigneron est confronté à une variabilité naturelle omniprésente, liée au millésime et aux facteurs pédoclimatiques. Depuis 10 ans, en Champagne, la relation qu’entretient le vigneron avec l’espace a évolué. Les exemples d’entreprises collectives à vocation territoriale se sont multipliés : gestion de l’hydraulique viticole, maillages de groupements de conseil viticole (Magister), sites en confusion sexuelle, réseau maturation, analyses de sols par secteur, …

Comportamiento de la variedade “Touriga Nacional” en la Región Demarcada del Douro, en diferentes condiciones climáticas y edáficas

A Região Demarcada do Douro, oferece uma diversidade geográfica, climática e biológica (grande número de castas em cultivo) extremamente grande e complexa, originando vinhas

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality under climate change conditions. This last is expected to drastically modify plant growth, with possible negative effects, especially in arid and semi-arid regions of Europe on the viticultural sector. In this context, the monitoring of spatial behavior of grapevine during the growing season represents an opportunity to improve the plant management, winegrowers’ incomes, and to preserve the environmental health, but it has additional costs for the farmer. Nowadays, UAS equipped with a VIS-NIR multispectral camera (blue, green, red, red-edge, and NIR) represents a good and relatively cheap solution to assess plant status spatial information (by means of a limited set of spectral vegetation indices), representing important support in precision agriculture management during the growing season. While differences between UAS-based multispectral imagery and point-based spectroscopy are well discussed in the literature, their impact on plant status estimation by vegetation indices is not completely investigated in depth. The aim of this study was to assess the performance level of UAS-based multispectral (5 bands across 450-800nm spectral region with a spatial resolution of 5cm) imagery, reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500 nm with spatial resolution of <2 m) through Convolutional Neural Network (CNN) approach, and point-based field spectroscopy (collecting 600 wavelengths across 400-1000 nm spectral region with a surface footprint of 1-2 cm) in a plant status estimation application, and then, using Bayesian regularization artificial neural network for leaf chlorophyll content (LCC) and plant water status (LWP) prediction. The test site is a Greco vineyard of southern Italy, where detailed and precise records on soil and atmosphere systems, in-vivo plant monitoring of eco-physiological parameters have been conducted.