Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Influenza di alcuni aspetti ambientali sul contenuto di stilbeni nel vino nell’area della DOC “Sangiovese di Romagna” (Italia)

Influenza di alcuni aspetti ambientali sul contenuto di stilbeni nel vino nell’area della DOC “Sangiovese di Romagna” (Italia)

Abstract

[English version below]

Nell’ambito della zonazione della Doc “Sangiovese di Romagna” sono stati descritti 25 siti sperimentali, aventi diversa origine geologica, in cui è stato individuato un vigneto omogeneo per la determinazione dei principali parametri viticoli ed enologici. In seguito è stato analizzato il contenuto di stilbeni nei vini al fine di approfondirne il legame con le caratteristiche geopedologiche. Lo studio descrive la relazione positiva tra l’altitudine e il contenuto di trans-piceide nelle province di Forlì e Ravenna e di trans-resveratrolo a Ravenna. I suoli con maggiore calcare attivo hanno fornito vini più ricchi in stilbeni.

The “Sangiovese di Romagna” zoning characterized 25 sites, based on a different geological origin. For each site, a representative commercial vineyard was chosen and the main viticultural and oenological parameters were recorded. The wine stilbene content was analyzed to investigate the effect of the geological origin and the soil composition. Positive relations between site elevation and trans-resveratrol and site elevation and trans-piceid were observed in the Ravenna and, Forlì and Ravenna area, respectively. The higher the active lime in the soils the richer the stilbenes in the wines.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Matteo GATTI (1,2), Silvia CIVARDI (2), Maurizio ZAMBONI (2), Luigi BAVARESCO (2), Federico FERRARI (3), Stefano RAIMONDI (4), Marco SIMONI (5), Driss ELOTHMANI (1), Frédérique JOURJON (1)

1) Laboratoire GRAPPE, Ecole Supérieure d’Agriculture
55 rue Rabelais, B.P. 30748, 49007 Angers Cedex 01, France
(2) Istituto di Frutti-Viticoltura, Università Cattolica del Sacro Cuore
Via E. Parmense 84, 29199 Piacenza, Italia
(3) Istituto di Chimica Agraria e Ambientale, Università Cattolica del Sacro Cuore
Via E. Parmense 84, 29199 Piacenza, Italia
(4) I.TER Soc. coop.
Via Brugnoli 11, 40122 Bologna, Italia
(5) ASTRA Innovazione e Sviluppo s.r.l.
Via Tebano 45, 48018 Faenza (RA), Italia

Contact the author

Keywords

Formazione geologica, Calcare attivo, Stilbeni, Sangiovese
Geology, Active lime, Stilbenes, Sangiovese

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Managing Grapevine Powdery Mildew with Ultraviolet-C Light in Washington State

Germicidal ultraviolet-C (UV-C) light has shown promising results for suppression of several plant-pathogenic microorganims, including Erysiphe necator, which attacks grapevine. In Washington State the majority of winegrape production is in a semi-arid steppe environment, with historically low powdery mildew disease pressure, making it a promising area to deploy UV-C as a disease management tool. Trials focusing on UVC application timing and frequency will assist in developing regionally-appropriate application recommendations for eastern Washington State.

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

High-volume mass-market white wines production method by means of harvest-deferred fermentation from desulphited musts allows an efficient business management by avoiding the seasonality in wine sector.

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

History of inorganic and isotopic signatures in Champagne over the last century: lessons

The notion of «terroir» refers to the link between the composition, quality and taste of a wine, on the one hand, and its place of origin, on the other. It involves, among other things, the signature of soil elements, as well as the influence of climatic conditions and plant material used. The composition of the wine is also influenced by the winemaking, storage and bottling processes. We were lucky enough to have a time series of the same champagne, from the end of the first world war to the present. On this exceptional time series, we followed, with the most advanced methods, all the elemental signatures by isotopic multi-dilution, the evolution of the isotopic ratios of heavy elements with very high precision of Sr, Pb, B and Cu.