Terroir 2010 banner
IVES 9 IVES Conference Series 9 Il Lambrusco reggiano e il territorio di pianura: un modello efficace

Il Lambrusco reggiano e il territorio di pianura: un modello efficace

Abstract

[English version below]

Il caso “Lambrusco” è emblematico di un buon connubio tra un gruppo di vitigni ed un territorio di pianura caratterizzato da suoli fertili e alluvionali, che determinano un elevato sviluppo vegetativo e produttivo delle piante e peculiari risposte qualitative.
In queste particolari condizioni pedoclimatiche, si producono diversi vini “Lambrusco”, a partire dagli omonimi vitigni di origine, legati tra loro dalle comuni origini selvatiche e dal buon grado di parentela, come dimostrato dalle recenti analisi genetiche.
Il vino Lambrusco del territorio di Reggio Emilia, prodotto in varie tipologie, è ottenuto da uvaggi di diversi lambruschi, ed è tipicamente frizzante, caratterizzato da una elevata componente acidica e da profumi freschi e giovani.
La viticoltura reggiana, grazie alla notevole abbondanza sul territorio di antiche varietà, è una viticoltura basata esclusivamente sulla coltivazione di vitigni autoctoni.
Le strutture produttive e di tutela presenti sul territorio, nonché le scelte colturali effettuate, hanno giocato un ruolo importante nel garantire solidità alla produzione e rispondere alle esigenze di mercato, per cui il Lambrusco rappresenta oggi, come già da molti anni, uno dei vini varietali italiani più esportati nel mondo e più importanti del panorama italiano.

“Lambrusco” is a typical example of good relationship between a group of grape cultivars and the territory where they are grown: alluvial plain characterized by fertile soils, stimulating high vigour and yield and characteristic qualitative traits.
In these peculiar soil and climate conditions, well characterized “Lambrusco” wines are produced from homonymous grape cultivars, that are interlinked by common wild origin and high parentage degree, as revealed by recent genetic analysis.
The Lambrusco of Reggio Emilia, obtained from different Lambrusco cultivars, is a typically sparkling red wine, with high acidity and fresh and young fragrances, produced in different types and designations.
Viticulture in Reggio Emilia province is exclusively based on autochthonous cultivars, due to the presence of many ancient grape varieties.
Productive and protection structures in this territory, together with cultivation choices, played and important role in ensuring soundness on production and reliable answers to market needs. As a consequence currently and since many years Lambrusco is one of the most important Italian varietal wines and one of the most exported worldwide.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

S. Meglioraldi, M. Storchi

Consorzio per la tutela dei vini “Reggiano” e “Colli di Scandiano e di Canossa”
Via Gualerzi 8, Reggio Emilia

Contact the author

Keywords

Lambrusco, pianura, fertilità, autoctono, frizzante, mercato
Lambrusco, plain, fertility, autochthonous, sparkling, market

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Viticultural zoning in D.O.C. Ribeiro (Galicia, NW Spain)

L’AOC Ribeiro est la plus ancienne de Galice (NO de l’Espagne), avec une aire de production potentielle de 3.200 ha. Situé dans la région centrale de la vallée du Miño, le Ribeiro a un climat de tipe maritime tempéré qui se correspond avec la zone climatique II de Winkler.

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Drought and heat stress will pose challenges for the future of viticulture and wine quality, as grapevine biological processes are pushed beyond their optimum conditions. Efforts are increasing to study and predict the effects of drought spells and heatwaves on grapevine physiology and resulting harvest quality. This calls for the development of adequate systems to induce and manipulate the required stress, especially in open field trials where conditions are more difficult to control. We present a semi-controlled system for studying drought and heat stress in grapevine in the field.