Terroir 2010 banner
IVES 9 IVES Conference Series 9 Geology and landscape as determining factors in microfields and development of the different Spanish appellations of origin

Geology and landscape as determining factors in microfields and development of the different Spanish appellations of origin

Abstract

Dividing agrarian exploitations into microfields is a problem that influences the modern viticulture in a very important way. The aim of this work is the study of the influence of Geology and Geomorphology in agricultural structures, and more exactly applied to viticulture microfields, as determining factors in evolution and development of certain Appellation of Origin (AO). The field division of three AO in the Northwest of Spain (Toro, Bierzo, Arribes) is compared. These three regions were chosen because they have similar influence elements.
The Toro AO (total area 76.076,43 ha; vineyard area 4.887,12 ha) is located to the West of Duero river basin and it is formed with limestone and carbonated detritic materials from the tertiary series and with the materials from the glacis and the medium and low terraces of the own river. In this context the altitude difference is small (650-825 m) and the shapes are flat and smooth in the quaternary relieve and undulating in the link tertiary surfaces with slopes under 20%. There are neither rocky outcrops nor stoniness to block the crop technical development.
The Bierzo AO (total area 142.672,08 ha; vineyard area 3.785,33 ha) is located in a sinking intermontane depression basin that is filled up with terraces materials, plioquaternary piedmont which are locally linked through tertiary detritical series with quartzite and schist materials that end in the primary mountainous edges due to basin close. The difference among cotes is important (525-1100 m) and the slopes are very changeable; flat in the alluvials, medium and high in the tertiary relieves and very high in the mountainous ones. Only in the mountainous basin edges there are some zones with rocky outcrops that block the crop technical development.
The Arribes AO (total area 101.969,94 Ha, vineyard area 1.66679 Ha) is located in an erosive surface that includes a whole of deep incisions and canyons of the Duero and its associated systems. In this surface the granite materials and schist, gneiss and quartzite paleozoic materials are predominant. These materials are locally covered with rests of glacis and quaternary materials and these filled up some depressions. The relief is very varied, from soft undulating surfaces in the erosive zone to vertical walls related to the incisions. In the whole AO the rocky outcrops and the stoniness make up or have made up an obstacle to the crop technical development.
Even though in the three AO a selection of the medium size is appreciated, the vineyard medium size is more than two times smaller in Toro AO (2.84) and in Bierzo AO (2.84), but more than five times smaller (5.54) in Arribes AO. On the other hand, while in the Toro AO, the wine-grower can select the better quality zones and zones with a proper structure and a independent of the considered elements, in Bierzo AO and in Arribes AO the vine-growers election possibilities are much lower or there are problems with the slopes which are often in relationships to the soil small effective depth, or if these problems have been eliminated by the effort through centuries the microfields division impede the vineyard crop technical development; the vineyard medium size is more than ten times higher in Toro AO, than in Bierzo AO and Arribes AO.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Vicente GOMEZ-MIGUEL (1), Vicente SOTES (1)

(1) Universidad Politécnica de Madrid (UPM). Avda Complutense s/n. 28040-Madrid, Spain

Contact the author

Keywords

terroir, zoning, landscape, geology, microfield, Appellations of Origin, Spain

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Influence of agronomic practices in soil water content in mid-mountain vineyards

In the context of LIFE project MIDMACC (LIFE18 CCA/ES/001099), several pilots have been installed in vineyards in mid mountain areas of Catalonia (NE Spain) to test well stablished agronomic practices to increase the adaptation of Mediterranean mid mountain to climate change. Soil water content (SWC) at three different depths (15, 30 and 45cm) was measured in continuum from August 2020. One pilot (WC) included a well-established green cover (GC), a new GC (NC) and a conventional soil management (CM, tilling+herbicides). NC presented an intermediate state between WC and CM, responding similarly to CM in autumn but quickly reaching similar SWC to WC, then following the same evolution till next spring, with CM presenting lower values along autumn and winter. Then vegetation activation decreased SWC in all plots, (much slower in CM, lacking GC). Sensibility to spring rains is again intermediate for NC, which joins SWC evolution of CM by the end of spring till next autumn. It is expected that NC will resemble WC more and more as its GC develops. In the pilot combining vine training (VSP vs Gobelet) and hillside management (slope vs terrace), no clear pattern could be related with these conditions. However, both terraces seem to be more sensitive to spring rains. A third pilot included new vineyards (7 and 1 year old). In the new vineyard (N), higher canopy development, a spontaneous green cover and row straw resulted in a slower SWC dynamic, not so sensitive to rains but conserving more soil water in spring and most of summer, even with presumably a higher water extraction by vines. In the newest vineyard (VN) the deepest sensor is still sensitive to rain events all over the year and SWC is always highest at this depth, revealing small water capture by vines.

Study of the fruity aroma of red wines through perceptual interactions among volatile compounds in the context of climate change for the Bordeaux vineyard

The fruity aroma of red wines is described by a wide range of descriptors, ranging from fresh fruits to ripe and jammy fruits, to candied fruits and prunes notes [1]. The fruity quality of a red wine is characterized by notes of fresh and jammy red- and black-berry fruits.

Produce wines with no quantifiable phytosanitary residues – Impact of washing grapes?

Consumer expectations are increasingly shifting towards “residue-free wines.” However, from an analytical standpoint, “zero” does not exist. Laboratories often use the quantification limits of analysis methods to signify ‘zero.’ Improved techniques now allow for the quantification of levels that were previously undetectable. This is why we prefer to use the term “unquantifiable residue” rather than “absence of residues.”

is the overall ecological awarness among Spanish winemakers related to their attitudes towards natural wines?

The Agenda 2030 of the EU sets out the main guidelines for transitioning towards a resilient, green and safe economy. To this regard, the wine sector is experiencing an ecological transition in different ways such as increasing the production of ecological crops, or promoting the production of wines under more environmental-friendly and healthier (i.e., lower levels of SO2) products. These alternatives to conventional production are a smaller proportion of wines, in constant growth and demand, and follow alternative and minority practices, which range from sustainable to deeply philosophical thoughts. Among these methods there are organic, biodynamic and, more recently, natural wines.

Evolution of cabernet sauvignon wines macerated with their own toasted vine-shoots

Toasted pruning vine-shoots represent a promising new enological tool for developing wines with chemical and organoleptic high quality, allowing that the resources of the vineyard to be returned to the wine through a “circular process”.