Terroir 2010 banner
IVES 9 IVES Conference Series 9 Geology and landscape as determining factors in microfields and development of the different Spanish appellations of origin

Geology and landscape as determining factors in microfields and development of the different Spanish appellations of origin

Abstract

Dividing agrarian exploitations into microfields is a problem that influences the modern viticulture in a very important way. The aim of this work is the study of the influence of Geology and Geomorphology in agricultural structures, and more exactly applied to viticulture microfields, as determining factors in evolution and development of certain Appellation of Origin (AO). The field division of three AO in the Northwest of Spain (Toro, Bierzo, Arribes) is compared. These three regions were chosen because they have similar influence elements.
The Toro AO (total area 76.076,43 ha; vineyard area 4.887,12 ha) is located to the West of Duero river basin and it is formed with limestone and carbonated detritic materials from the tertiary series and with the materials from the glacis and the medium and low terraces of the own river. In this context the altitude difference is small (650-825 m) and the shapes are flat and smooth in the quaternary relieve and undulating in the link tertiary surfaces with slopes under 20%. There are neither rocky outcrops nor stoniness to block the crop technical development.
The Bierzo AO (total area 142.672,08 ha; vineyard area 3.785,33 ha) is located in a sinking intermontane depression basin that is filled up with terraces materials, plioquaternary piedmont which are locally linked through tertiary detritical series with quartzite and schist materials that end in the primary mountainous edges due to basin close. The difference among cotes is important (525-1100 m) and the slopes are very changeable; flat in the alluvials, medium and high in the tertiary relieves and very high in the mountainous ones. Only in the mountainous basin edges there are some zones with rocky outcrops that block the crop technical development.
The Arribes AO (total area 101.969,94 Ha, vineyard area 1.66679 Ha) is located in an erosive surface that includes a whole of deep incisions and canyons of the Duero and its associated systems. In this surface the granite materials and schist, gneiss and quartzite paleozoic materials are predominant. These materials are locally covered with rests of glacis and quaternary materials and these filled up some depressions. The relief is very varied, from soft undulating surfaces in the erosive zone to vertical walls related to the incisions. In the whole AO the rocky outcrops and the stoniness make up or have made up an obstacle to the crop technical development.
Even though in the three AO a selection of the medium size is appreciated, the vineyard medium size is more than two times smaller in Toro AO (2.84) and in Bierzo AO (2.84), but more than five times smaller (5.54) in Arribes AO. On the other hand, while in the Toro AO, the wine-grower can select the better quality zones and zones with a proper structure and a independent of the considered elements, in Bierzo AO and in Arribes AO the vine-growers election possibilities are much lower or there are problems with the slopes which are often in relationships to the soil small effective depth, or if these problems have been eliminated by the effort through centuries the microfields division impede the vineyard crop technical development; the vineyard medium size is more than ten times higher in Toro AO, than in Bierzo AO and Arribes AO.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Vicente GOMEZ-MIGUEL (1), Vicente SOTES (1)

(1) Universidad Politécnica de Madrid (UPM). Avda Complutense s/n. 28040-Madrid, Spain

Contact the author

Keywords

terroir, zoning, landscape, geology, microfield, Appellations of Origin, Spain

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

The albarizas and the viticultural zoning of Jerez­-Xérès-Sherry and Manzanilla-Sanlúcar de Barrameda registered apellations of origin (Cadiz, Spain)

Le terme ”Albariza” (du latin “albus“, blanc) déterminait à l’origine un type particulier du terrain calcaire, mais à présent il sert aussi à définir les sols et la bibliographie géologique actuelle le cite également pour de roches sédimentaires originaires du Neogene Betic.

A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations

Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum.

Mobile device to induce heat-stress on grapevine berries

Studying heat stress response of grapevine berries in the field often relies on weather conditions during the growing season. We constructed a mobile heating device, able to induce controlled heat stress on grapes in vineyards. The heater consisted of six 150 W infrared lamps mounted in a profile frame. Heating power of the lamps could be controlled individually by a control unit consisting of a single board computer and six temperature sensors to reach a pre-set temperature. The heat energy applied to individual berries within a cluster decreases by the squared distance to the heat source, enabling the establishment of temperature profiles within individual clusters. These profiles can be measured by infrared thermography once a steady state has been reached. Radiant flux density received by a berry depending on the distance was calculated based on a view factor and measured lamp surface temperature and resulted to 665 Wm-2 at 7cm. Infrared thermography of the fruit surface was in good agreement with measurements conducted with a thermocouple inserted at epidermis level. In combination with infrared thermography, the presented device offers possibilities for a wide range of applications like phenotyping for heat tolerance in the field to proceed in the understanding of the complex response of plants to heat stress. Sunburn necrosis symptoms were artificially induced with the aid of the device for cv. Bacchus and cv. Sylvaner in the 2020 and 2021 growing season. Threshold temperatures for sunburn induction (LT5030min) were derived from temperature data of single berries and visual sunburn assessment, applying logistic regression. A comparison of threshold temperatures for the occurrence of sunburn necrosis confirmed the higher susceptibility of cv. Bacchus. The lower susceptibility of cv. Sylvaner did not seem to be related to its phenolic composition, rendering a thermoprotective role of berry phenolic compounds unlikely.

Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Conventional vineyard practices have lead in many environmental disturbances as erosion, soil compaction, loss of organic matter and soil biodiversity, water contamination