Terroir 2010 banner
IVES 9 IVES Conference Series 9 Comparison of the free radical-scavenging activity in infected oidium and sound dolcetto grape cultivar grown in a terroir of Central Italy

Comparison of the free radical-scavenging activity in infected oidium and sound dolcetto grape cultivar grown in a terroir of Central Italy

Abstract

The importance of polyphenols, which are present in many vegetables and grapes too, is well-know and documented. Specific research works about the red grape and its derivative juices and wines show that the antioxidant and/or antiradical activities are directly correlated with the complex polyphenol matrix. The content of polyphenols in grapes is clearly affected by agroecological factors: the cultivar, climatic condition, the effect of geographic origin of grapes, soil, chemistry, fertilization, and the degree of maturation. Aim of this work was value the radical-scavenging activity of polyphenols extract from skins and seeds of Dolcetto cultivar derived from infected Oidium grape and from the same sound grape. Infested Dolcetto grapes and sound Dolcetto grapes were grown in same terroir and with same training system (cordon spur).
The antiradical activity was determined by assay of free radical– 2,2 Diphenyl-1-picryl-hydrazyl (DPPH) method and total polyphenols content was determined by Folin – Ciocalteu method. Data show significant increase of total polyphenols both in skins and seeds from infected Oidium Dolcetto grape with respect to skin and seed total polyphenols from sound grape. To the contrary antioxidant activity calculated as value of ARP (1/EC50 P/D) in infected grape decreased significantly respecting sound grape. Therefore a possible relationship between the change composition of polyphenols in infected grapes and antioxidant property is suggested. While the antioxidant activity, calculated as micromoles of Trolox/g sample, increase in skins and seeds from infested Oidium grape with respect to skins e seeds from sound grape.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

F. Cecchini (1), B.Giannini (2)

(1) Researcher CRA Unità per le produzione enologiche dell’Italia Centrale via Cantina sperimentale,1 -00049
Velletri (Roma), Italy
(2) Biology student CRA Unità per le produzione enologiche dell’Italia Centrale via Cantina sperimentale, 1 – 00049 Velletri (Roma), Italy

Contact the author

Keywords

Skins, seeds, Oidium, antioxidant activity, polyphenols

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Plant regeneration via somatic embryogenesis and preliminary trials for the application of the DNA-free genome editing in grapevine cv. Corvina veronese

Grapevine (Vitis spp.) is a globally significant fruit crop, and enhancing its agronomic and oenological traits is crucial to meet changing agricultural conditions and consumer demands. Conventional breeding has played a key role in domesticating grapevine varieties, but it is a time-consuming process to develop new cultivars with desirable traits for cultivation.
New plant breeding techniques (NpBTs) offer a potential revolution in grapevine cultivation, and genome editing has shown promise for targeted mutagenesis. The success of these biotechnological approaches relies on efficient in vitro regeneration protocols, particularly through somatic embryogenesis (SE).

Natural sparkling wine pétillant naturel: technological features and sensory profile

The article presents the results of a study on the technological features of producing sparkling wines of the Pétillant Naturel (Pet-Nat) type, made using the ancestral method from the Muscat Ottonel and Pinot Noir grape varieties.

1H-NMR-based Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

The aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through untargeted and targeted 1H-NMR metabolomics. One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz. The spectra were recorded by applying the NOESYGPPS1D pulse sequency, to achieve water and ethanol signals suppression. No modification of the pH was performed to avoid any chemical alteration of the matrix. The generation of input variables for untargeted analysis was done via bucketing the spectra. The resulting dataset was preprocessed prior to perform unsupervised PCA, by means of MetaboAnalyst web-based tool suite. The identification of compounds for the targeted analysis was performed by comparison to pure compounds spectra by means of SMA plug-in of MNova 14.2.3 software. The dataset containing the concentrations (%) of identified compounds was subjected to one-way analysis of variance (ANOVA) to highlight significant differences among the wines. The untargeted analysis, carried out through the PCA, revealed a clear differentiation among the wines. The fragments of the spectra contributing mostly to the separation were attributed to flavonoids, aroma compounds and amino acids. The targeted analysis leaded to the identification of 68 compounds, whose concentrations were significant different among the wines. The results were related to soils physical-chemical analysis and showed that: 1) high concentrations of flavan-3-ols and flavonols are correlated with high clay content in soils; 2) high concentrations of anthocyanins, amino acids, and aroma compounds are correlated with neutral and moderately alkaline soil pH; 3) low concentrations of flavonoids and aroma compounds are correlated with high soil organic matter content and acidic pH. The 1H-NMR metabolomic analysis proved to be an excellent tool to discriminate between wines originating from grapes grown on different soil types and revealed that soils in the Mediterranean area exert a strong impact on the chemical composition of the wines.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.

Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Recent wine-like reconstitution sensory studies confirmed that several monoterpenes were the key aroma compounds in the perception of an ‘apricot’ aroma attribute in Viognier wine.