Terroir 2008 banner
IVES 9 IVES Conference Series 9 Rare earth elements distribution in grape berries

Rare earth elements distribution in grape berries

Abstract

Rare Earth Elements (REEs) include 15 lanthanides, yttrium and scandium. Their occurrence in soil and plants seems to be closely tied to the geological composition of the underlying mother rock, to the physical and chemical properties of the soil and to the specific ability of the plant to take up and accumulate these microelements. To date knowledge regarding the composition and distribution of trace elements in Vitis vinifera has been lacking or is inadequate. The aim of this research was to study REEs distribution in Chardonnay berries harvested at ripeness in 2006 in Trentino (north-eastern Italy).
After washing and microwave acid digestion, both the total REEs content in the berries and the REEs distribution within the skin, seeds and flesh were quantified. Analysis of 13 elements (yttrium, Y; lanthanum, La; cerium, Ce; praseodymium, Pr; neodymium, Nd; samarium, Sm; europium, Eu; gadolinium, Gd; dysprosium, Dy; holmium, Ho; erbium Er; thulium, Tm; ytterbium, Yb) was carried out with an inductively coupled plasma mass spectrometer.
The total REEs content measured in berries was 2.079 μg/kg of fresh weight. The order in terms of percentage content within the berry was skin > flesh > seeds (p<0.05) for Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho and Er. For Tm and Yb there were no significant differences between the skin and flesh. Eu showed a significantly different distribution pattern.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Daniela BERTOLDI (1,2), Roberto LARCHER (1), Giorgio NICOLINI (1), Massimo BERTAMINI (1), Giuseppe CONCHERI (2)

(1) IASMA Research Centre. Via E.Mach, 1. 38010 San Michele all’Adige (TN) Italy
(2) Agricultural Biotechnology Department, University of Padova. Viale dell’Università, 16. 35020. Legnaro (PD) Italy

Contact the author

Keywords

Rare Earth Elements, berry, seed, skin, ICP-MS

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Strategies for sample preparation and data handling in GC-MS wine applications

It is often said that wine is a complex matrix and the chemical analysis of wine with the thousands of compounds detected and often measured is proof. New technologies can assist not only in separating and identifying wine compounds, but also in providing information about the sample as a whole. Information-rich techniques can offer a fingerprint of a sample (untargeted analysis), a comprehensive view of its chemical composition. Applying statistical analysis directly to the raw data can significantly reduce the number of compounds to be identified to the ones relevant to a particular scientific question. More data can equal more information, but also more noise for the subsequent statistical handling.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

Impact of Metschnikowia pulcherrima and Saccharomyces cerevisiae in mixed fermentation on volatile compounds and energy sustainability in Lugana wine

In recent years, heightened awareness of the environmental impact has led to sustainability as a key issue for the winemaking sector.

Identification and formation kinetic study of phenolic compounds-volatile thiols adducts by enzymatic oxidation

By using HPLC-ESI-MS, 1H, 13C and 2D NMR, new addition products between catechin, epicatechin, caftaric acid and 3SH were characterized. Caftaric acid formed more rapidly adducts with 3SH than catechin and epicatechin in the absence of other nucleophiles.

Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

The Precision Viticulture (PV) is defined “as a management system that is information and technology based, is site specific and uses one or more of the following sources of data: soils, vigour, nutrients, pests, moisture, and yield among others, for optimum profitability, sustainability, and protection of the environment” (OIV, 2018, in process). The elements mentioned in the definition are an important part of the terroir components. The terroir is a tool In Viticulture, it is the analysis and study unit, and the variability of a certain situation can be due to any difference in every element or property of each factor that constitutes it, including the management.The soil and its management are those that bring the most variability to terroir.