Terroir 2008 banner
IVES 9 IVES Conference Series 9 Rare earth elements distribution in grape berries

Rare earth elements distribution in grape berries

Abstract

Rare Earth Elements (REEs) include 15 lanthanides, yttrium and scandium. Their occurrence in soil and plants seems to be closely tied to the geological composition of the underlying mother rock, to the physical and chemical properties of the soil and to the specific ability of the plant to take up and accumulate these microelements. To date knowledge regarding the composition and distribution of trace elements in Vitis vinifera has been lacking or is inadequate. The aim of this research was to study REEs distribution in Chardonnay berries harvested at ripeness in 2006 in Trentino (north-eastern Italy).
After washing and microwave acid digestion, both the total REEs content in the berries and the REEs distribution within the skin, seeds and flesh were quantified. Analysis of 13 elements (yttrium, Y; lanthanum, La; cerium, Ce; praseodymium, Pr; neodymium, Nd; samarium, Sm; europium, Eu; gadolinium, Gd; dysprosium, Dy; holmium, Ho; erbium Er; thulium, Tm; ytterbium, Yb) was carried out with an inductively coupled plasma mass spectrometer.
The total REEs content measured in berries was 2.079 μg/kg of fresh weight. The order in terms of percentage content within the berry was skin > flesh > seeds (p<0.05) for Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho and Er. For Tm and Yb there were no significant differences between the skin and flesh. Eu showed a significantly different distribution pattern.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Daniela BERTOLDI (1,2), Roberto LARCHER (1), Giorgio NICOLINI (1), Massimo BERTAMINI (1), Giuseppe CONCHERI (2)

(1) IASMA Research Centre. Via E.Mach, 1. 38010 San Michele all’Adige (TN) Italy
(2) Agricultural Biotechnology Department, University of Padova. Viale dell’Università, 16. 35020. Legnaro (PD) Italy

Contact the author

Keywords

Rare Earth Elements, berry, seed, skin, ICP-MS

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Study of grape-ripening process variability using mid infrared spectroscopy

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist.

Elucidating white wines peptides: An analytical breaktrough

The chemistry of wine is particularly complex due to biochemical and chemical interactions that significantly modify its organoleptic characteristics and stability over time. Aging on lees is a well-known practice during which various compounds are released, ensuring wines oxidative stability and its overall sensory quality [1,2].

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

Is wine terroir a valid concept under a changing climate?

The OIV[i] defines terroir as a concept referring to an area in which collective knowledge of the interactions between the physical and biological environment (soil, topography, climate, landscape characteristics and biodiversity features) and vitivinicultural practices develops, providing distinctive wine characteristics. Those are perceptible in the taste of wine, which drives consumer preference and, therefore, wine’s value in the marketplace. Geographical indications (GI) are recognized regulatory constructs formalizing and protecting the nexus between wine taste and the terroir generating it. Despite considering updates, GIs do not consider the nexus as a dynamic one and do not anticipate change, namely of climate. Being climate a fundamental feature of terroir, it strongly impacts wine characteristics, such as taste. According to IPCC[ii], many widespread, rapid and unprecedented changes of climate occurred, some being irreversible over hundreds to thousands of years. Climatic shifts and atmospheric-driven extreme events have been widely reported worldwide. Recent climatic trends are projected to strengthen in upcoming decades, whereas extremes are expected to increase in frequency and intensity, forcing wines away from GI definitions. Geographical shifts of viticultural suitability are projected, often moving into regions and countries different from current ones. Some authors propose adaptation in viticulture, winemaking and product innovation. We show evidence of climate changing wine characteristics in the Douro valley, home of 270-year-old Port GI. We discuss herein resist or adapt stances for when climate changes the nexus between terroir and wine characteristics. Using the MED-GOLD[iii] dashboard, a tool allowing for easy visual navigation of past and future climates, we demonstrate how policymakers can identify future moments, throughout the 21st century under different emission scenarios, when GI specifications will likely need updates (e.g., boundaries, varieties) to reduce climate-change impacts.