Terroir 2008 banner
IVES 9 IVES Conference Series 9 Effects of regulated deficit irrigation (RDI) on grape composition in Monastrell grapevines under semiarid conditions

Effects of regulated deficit irrigation (RDI) on grape composition in Monastrell grapevines under semiarid conditions

Abstract

The influence of two pre-veraison and post-veraison regulated deficit irrigation (RDI) strategies on yield and grape quality was analyzed during a two year period for mature grapevines (cv. Monastrell) in Southeastern of Spain. Three irrigation treatments were applied: T1 control treatment which was irrigated at 60% ETc for the full season (without water stress), applying 319 mm per year; RDI-1 irrigated equal to the control, except from fruit set to harvest (early June-mid –September) where 50% respect to the control was applied and post-harvest (mid-September-end of October) where 75% respect to the control was applied; the water quantity applied in this treatment was 206 mm per year. RDI-2 irrigated equal to the control except from fruit set to harvest where 25% respect to the control was applied and post-harvest irrigated at 75%, applying 157 mm per year. The severity of water stress was characterized by measurements of midday xylem water potential and photosynthesis rate. The grape quality parameters (º Brix, berry weight, titratable acidity, pH, malic, tartatic, color intensity and anthocyanins and polyphenols contents) were also analyzed at harvest. The influence of water stress in different phenological stages on grape quality and the relationship between berry size, fruit quality and level of water stress was analyzed.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

ROMERO AZORÍN P., FERNÁNDEZ FERNÁNDEZ J.I., VILA LÓPEZ R., GIL MUÑOZ R., MARTÍNEZ CUTILLAS A

Department of Viticulture, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), c/Mayor, s/n, 31050, La Alberca, Spain

Contact the author

Keywords

berry composition, berry size, deficit irrigation, water stress, photosynthesis

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

A Visual Information eNvironment for Effective agricultural management and Sustainability (VINES) is under development, which can provide significant competitive advantages to winegrowers by sustaining their appellation-specific grape and wine qualities and yields while measurably conserving water resources.

Identifying New Zealand Sauvignon blanc terroirs

The concept of terroir is well established in the ‘old world’ wine industry but its use is still relatively new in New Zealand. Marlborough Sauvignon blanc has become a benchmark

CropManage online decision support tool for irrigation scheduling of vineyards

CropManage (CM) is an online decision support service (DSS) developed by the University of California, Division of Agriculture and Natural Resources for assisting farmers with efficiently managing water and nitrogen fertilizer to match the site-specific needs of their crops.

Rapid quantification of higher alcohols in wine, port wine and brandy by HS-GC-FID

In response to the growing demand for rapid, precise, and efficient methods of quantifying volatile compounds in alcoholic beverages, this study presents a novel approach for the determination of higher alcohols in wine, port wine, and brandy.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].