Terroir 2008 banner
IVES 9 IVES Conference Series 9 Effects of regulated deficit irrigation (RDI) on grape composition in Monastrell grapevines under semiarid conditions

Effects of regulated deficit irrigation (RDI) on grape composition in Monastrell grapevines under semiarid conditions

Abstract

The influence of two pre-veraison and post-veraison regulated deficit irrigation (RDI) strategies on yield and grape quality was analyzed during a two year period for mature grapevines (cv. Monastrell) in Southeastern of Spain. Three irrigation treatments were applied: T1 control treatment which was irrigated at 60% ETc for the full season (without water stress), applying 319 mm per year; RDI-1 irrigated equal to the control, except from fruit set to harvest (early June-mid –September) where 50% respect to the control was applied and post-harvest (mid-September-end of October) where 75% respect to the control was applied; the water quantity applied in this treatment was 206 mm per year. RDI-2 irrigated equal to the control except from fruit set to harvest where 25% respect to the control was applied and post-harvest irrigated at 75%, applying 157 mm per year. The severity of water stress was characterized by measurements of midday xylem water potential and photosynthesis rate. The grape quality parameters (º Brix, berry weight, titratable acidity, pH, malic, tartatic, color intensity and anthocyanins and polyphenols contents) were also analyzed at harvest. The influence of water stress in different phenological stages on grape quality and the relationship between berry size, fruit quality and level of water stress was analyzed.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

ROMERO AZORÍN P., FERNÁNDEZ FERNÁNDEZ J.I., VILA LÓPEZ R., GIL MUÑOZ R., MARTÍNEZ CUTILLAS A

Department of Viticulture, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), c/Mayor, s/n, 31050, La Alberca, Spain

Contact the author

Keywords

berry composition, berry size, deficit irrigation, water stress, photosynthesis

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The FEM grapevine breeding program: new registered varieties (mid-)resistant to the main ampelopathies

“Vinum debet esse naturale ex genimine vitis et non corruptum”. The Eucharistic wine must be made with pure grapes that must not be contaminated in any way. This is how wine was born in the monastery of the Augustinians, and that is how the genetic improvement of grapevine implemented over the decades at the Agricultural Institute of San Michele all’Adige (since 1874; Trentino – Italy) has been oriented to make the cultivation of grapes always more sustainable. This concept is still current and meets the worldwide urgent need of reducing the use of chemicals, under a climate crisis scenario. Since the beginning of the twentieth century, the varieties introduced in Trentino and the new cultivars produced by pioneer breeders have already embraced the principle of sustainable viticulture.

Climate change impacts on grapevine leafroll disease and its transmission by mealybugs

Climate change impacts crop plants, plant pathogens, and their insect vectors and hence adds abiotic stress to the triangle of plant-virus-vector interactions.

Fast, and full microbiological wine analysis using triple cellular staining.

We propose here a brand new large routine microbiological analysis method intended for oenology, in flow cytometry, using high performance equipment and triple selective cell staining, activated by fluorescence. The results and practical applications of the method are presented: Brettanomyces (Dekkera) Monitoring, fermentations monitoring, bottling and enological practices monitoring.The method allow a complete new microbiological tool for wine industry.The method has been accredited ISO 17025 in our laboratories.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.

The effect of short and long-term water deficit on physiological performance and leaf microbiome of different rootstock and scion combinations

Climate change, particularly drought stress, threatens viticulture sustainability. Understanding scion-rootstock interactions and their link to the grapevine microbiome is key to improving vine health, productivity, and drought resilience.