Terroir 2008 banner
IVES 9 IVES Conference Series 9 «Observatoire Mourvèdre»: statistical modelling of quality for Cv. Mourvèdre

«Observatoire Mourvèdre»: statistical modelling of quality for Cv. Mourvèdre

Abstract

Vine cultivar Mourvèdre is present all around the Mediterranean area and is interesting for its tannins and the specificity of its aromas. It is though difficult to manage. A wide project started in 1999 in order to determine what conditions are mostly important on the quality of the grapes and wines of Mourvèdre. During 5 years and on 32 different plots from Roussillon region up north towards Ardèche and east towards Var vineyards, a large amount of climatic, phenological, water stress, plant and grape data has been collected. Data mining PLS Spline method was used to model different variables of quality like sugar content in musts. The model obtained, that is able to predict the potential of a parcel, pointed out the major importance of the climate, as long as the yield and the leaf canopy management. It has then been validated on 4 different zones for the year 2005.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

CLAVERIE M. (1), DURAND J.F. (2)

(1) Institut Français de la Vigne et du Vin (ENTAV-ITV France), Station régionale Rhône-Méditerranée, Domaine de Donadille, Rodilhan, France
(2) Laboratoire de Probabilités et Statistiques, Université de Montpellier II, Montpellier, France

Contact the author

Keywords

vine, Mourvèdre cultivar, model, maturity, sugar content

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Aim: to elucidate if it is possible to detect variations in the source of nitrogen (organic vs. inorganic) measuring nitrogen isotope ratio (δ15N) in berries and to examine the degree of variation occurring for this parameter naturally within a vineyard.

What do we know about the kerosene/petrol aroma in riesling wines?

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data. METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN. RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1].

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain.

Ugni blanc berry and wine composition impacted by thirteen rootstocks

The Cognac region is expanding, driven by the success of its renowned brandy and the demand for high grape yields to ensure a steady supply of base wine for distillation. Ugni blanc, the most widely planted grape variety, relies on rootstocks for soil and climate adaptation, providing essential nutrient supplies to the scion. Understanding the impact of rootstocks on key berry components, such as sugars and nitrogen compounds, is crucial. These compounds serve as primary precursors for the production of fermentative aroma metabolites, which, in turn, act as quality indicators for eau-de-vie.

Evaluation of aroma characteristics in Vitis amurensis grapes across different regions by using HS-SPME-GC/MS

Background: Aroma compounds are important secondary metabolite in grapes and play important roles in the flavor and quality of grape berries and their wines. Vitis amurensis grape belongs to the East Asian Vitis spp., with excellent cold and disease resistance, and exhibits strong brewing potential. However, it has not been effectively utilized and there is no systematic research on the aroma compounds of V. amurensis grapes.
Methods: To provide sufficient experimental evidence for the characteristic aroma of V. amurensis grape, HS-SPME-GC/MS was used to identify the aroma compounds of five V. amurensis (‘Beiguohong’, ‘Beiguolan’, ‘Shuangfeng’, ‘Shuanghong’, ‘Shuangyou’) and three interspecific hybrids (‘Beibinghong’, ‘Xuelanhong’, ‘Zuoyouhong’) grapes in Zuojia and Ji’an. The grape berries were collected at harvest in 2020, 2021 and 2022.