Terroir 2008 banner
IVES 9 IVES Conference Series 9 Evaluation of grape and wine quality according to harvest date, in a tropical region in Northeast Brazil

Evaluation of grape and wine quality according to harvest date, in a tropical region in Northeast Brazil

Abstract

The Northeast region of Brazil is characterized by a semi-arid climate, has produced tropical wines since twenty years ago. The region is located at 09º 09’ South, 40º 22’ West, 365.5 m. In the region it’s possible to harvest grapes for winemaking process two or three times by year, depending of the cultivar. The aim of this study was to evaluate differences between grape and wine characteristics, according to the production seasons. It was evaluated three cultivars recently introduced in the region (‘Alfrocheiro’, ‘Deckrot’ and ‘Tempranillo’), produced in December 2006 and June 2007. The vines were planted in December 2004 in a grid spacing of 3 x 1.5 m, trellis system adopted was pergola, grafted on rootstock IAC-313 (‘Golia’ x Vitis cinerea), and have been irrigated by drippers. Significant differences were found for the grape and wine compositions according to the harvest date. The grapes from the first semester presented low pH and total solid soluble (ºBrix) and high acidity than grapes harvested in the second semester. The wines produced in the first semester had low alcohol and high acidity levels than wines from second semester. Normally, the commercial wines are made by mix between wines produced from different seasons in the year. ‘Tempranillo’ wines presented good quality and could be used by the wineries. It’s necessary to continue studying and determining the influences of the seasons on grape and wine quality, and the responses of new cultivars introduced in the region to allow the production of high quality and typical wines.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Giuliano ELIAS PEREIRA (1); Juliana de OLIVEIRA SANTOS (2), Celito CRIVELLARO GUERRA (3), Luis ANTÔNIO ALVES (4)

(1) Embrapa Raisin et Vin/Semi- Aride, Centre National de Recherche de la Vigne et du Vin; détaché au Centre de Recherche du Tropique Semi-Aride. BR 428, Km 152 ; Code Postal 56302-970. Petrolina-PE, Brésil. Petrolina-PE-Brasil
(2) Boursier CNPq/ITEP/Embrapa
(3) Embrapa Raisin et Vin, Bento Gonçalves-RS-Brasil
(4) Embrapa Semi-Aride, Petrolina-PE-Brasil

Contact the author

Keywords

Vitis vinifera L., tropical wines, enology, enological potentiality

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Ozone to improve the implantation of Lachancea thermotolerans for improving pH in warm areas in wines with low SO2 levels

Una de las biotecnologías más potentes para disminuir el pH en vinos de zonas cálidas y en variedades de pH elevado es el uso de la levadura no-saccharomyces lachancea thermotolerans. Esta especie es capaz de formar ácido láctico a partir de azúcares, reduciendo al mismo tiempo ligeramente el grado alcohólico. Por lo tanto, mejora dos de los principales problemas de los vinos de regiones afectadas por el calentamiento global. El ácido láctico es un ácido orgánico con una buena integración sensorial en el sabor del vino, y también química y biológicamente estable durante el envejecimiento del vino.

Exploring the impact of grape pressing on must and wine composition

Pressing has a relevant impact on the characteristics of the must and subsequently on white wines produced [1]. Therefore, the adequate management of pressing can lead to the desired extraction of phenols and other grape compounds (i.e. Organic acids), aromas and their precursors, allowing the production of balanced wines [2]. This aspect is especially important to sparkling wine where the acidity and pH, and the content of phenols affect its longevity and the expected sensory character.

Leaf necrosis induced by the insecticide carbaryl in Vitis rupestris ‘B38’

Carbaryl is an acetylcholine esterase inhibitor-type insecticide used for pest control on grapevine. We repeatedly observed the occurrence of interveinal leaf necrosis following carbaryl spray application in a Vitis rupestris x Vitis riparia F1 hybrid progeny vineyard. Spray applications induced necrosis in this progeny under both Missouri and New York field conditions an approximate one-to-one sensitive-to-insensitive segregation ratio and with 42% concordance. Results of subsequent in vitro experiments established causality between carbaryl treatment and leaf necrosis and confirmed the pattern of segregation observed in the field. We consistently map this phenotype to a major QTL on chromosome 16 of the female parent V. rupestris ‘B38’ regardless of whether we used field or in vitro-generated phenotype data.

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact.