Terroir 2008 banner
IVES 9 IVES Conference Series 9 Evaluation of grape and wine quality according to harvest date, in a tropical region in Northeast Brazil

Evaluation of grape and wine quality according to harvest date, in a tropical region in Northeast Brazil

Abstract

The Northeast region of Brazil is characterized by a semi-arid climate, has produced tropical wines since twenty years ago. The region is located at 09º 09’ South, 40º 22’ West, 365.5 m. In the region it’s possible to harvest grapes for winemaking process two or three times by year, depending of the cultivar. The aim of this study was to evaluate differences between grape and wine characteristics, according to the production seasons. It was evaluated three cultivars recently introduced in the region (‘Alfrocheiro’, ‘Deckrot’ and ‘Tempranillo’), produced in December 2006 and June 2007. The vines were planted in December 2004 in a grid spacing of 3 x 1.5 m, trellis system adopted was pergola, grafted on rootstock IAC-313 (‘Golia’ x Vitis cinerea), and have been irrigated by drippers. Significant differences were found for the grape and wine compositions according to the harvest date. The grapes from the first semester presented low pH and total solid soluble (ºBrix) and high acidity than grapes harvested in the second semester. The wines produced in the first semester had low alcohol and high acidity levels than wines from second semester. Normally, the commercial wines are made by mix between wines produced from different seasons in the year. ‘Tempranillo’ wines presented good quality and could be used by the wineries. It’s necessary to continue studying and determining the influences of the seasons on grape and wine quality, and the responses of new cultivars introduced in the region to allow the production of high quality and typical wines.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Giuliano ELIAS PEREIRA (1); Juliana de OLIVEIRA SANTOS (2), Celito CRIVELLARO GUERRA (3), Luis ANTÔNIO ALVES (4)

(1) Embrapa Raisin et Vin/Semi- Aride, Centre National de Recherche de la Vigne et du Vin; détaché au Centre de Recherche du Tropique Semi-Aride. BR 428, Km 152 ; Code Postal 56302-970. Petrolina-PE, Brésil. Petrolina-PE-Brasil
(2) Boursier CNPq/ITEP/Embrapa
(3) Embrapa Raisin et Vin, Bento Gonçalves-RS-Brasil
(4) Embrapa Semi-Aride, Petrolina-PE-Brasil

Contact the author

Keywords

Vitis vinifera L., tropical wines, enology, enological potentiality

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Coping with heatwaves: management strategies for berry survival and vineyard resilience

Climate change is leading to an increase in average temperature and in the frequency and severity of heatwaves that is already significantly affecting grapevine phenology and berry composition (Webb et al., 2010). This is compounded by water stress, which is well known to increase the vulnerability of grapevines and berries to heatwaves. In hot climate regions like australia, grape production is only possible due to relatively secure supplies of water for irrigation. However, the upper temperature limits for berry survival of well-watered grapevines remains to be tested.

α-Terpinyl ethyl ether: stereoselective GC × GC confirmation and identification of its precursors in wine

Wines exhibit profound chemical complexity which arise from a diverse array of compounds that contribute to its sensory profile.

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

Exploring the influence of grapevine rootstock on yield components 

Yield is an agronomic trait that is critical to the sustained success and profitability of the wine industry. In the context of global warming, overall yield tends to decrease. Rootstock has been identified as a relevant lever for adaptation to changing environmental conditions. The aims of this study are; i) to finely identify the components of the yield influenced by rootstock; ii) to characterise the rootstock × scion interaction; iii) to understand the trade-off between vigour and yield.

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.