Terroir 2008 banner
IVES 9 IVES Conference Series 9 Typology of wines in touch with environmental factors of terroirs and grapevine. Application to the Chinon vineyard

Typology of wines in touch with environmental factors of terroirs and grapevine. Application to the Chinon vineyard

Abstract

According to the vintage, it may be difficult for vine growers to make a decision regarding the type of wine in relation with the soils. The present work aims at proposing typology of wines to the Chinon growers, as a basis for reflection on the wine type in relation with the terroir units and the vintage water supply conditions.
In order to bring out factors associated to a wine structure, a first classification was established thanks to a multiple factorial analysis (MFA), taking into account three qualitative variables resulting from a survey on 506 cultural units of the Chinon vineyard. This first classification was then linked to a second one obtained through an ascendant hierarchical classification (AHC) carried out on an experimental network of the INRA-UVV unit of Angers (49-France). This network of 14 plots, distributed on different terroir units in the Chinon, Bourgueil and Saumur AOC, was monitored for physiological and meteorological data over the 2002-2005 period. The AHC used the data for a humid year (2004) and a dry year (2005). For each year, the experimental plots were grouped into three classes according to their pedoclimatic profiles.
By crossing the two classifications it was possible to elaborate a typology of the Chinon wines in relation with the environmental factors of the terroir units and the water supply conditions of the vintage.
This method, based only on two reference years and a wine typology for the Cabernet franc variety, was successful for analyzing the conditions for the elaboration of a given type of Chinon wine in relation to a precise cartography of the terroir units. This prospective process needs to be generalized.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

V. COURTIN (1), D. RIOUX (1), D. BOUTIN (2), S.CESBRON (1), A-C.KASPRIK (2)

(1) UMT Vinitera – Cellule Terroirs Viticoles, 42 rue Georges Morel, 49071 Beaucouzé Cédex
(2) Chambre d’Agriculture d’Indre-et-Loire, 38 rue Augustin Fresnel, BP 139, 37171 Chambray les Tours

Contact the author

Keywords

Chinon vineyard, terroir, vintage rainfall, wine typology

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Phloem anatomy traits predict maximum sugar accumulation rates

Heat and water stress can accelerate berry sugar accumulation and lead to excessive sugar-to-acid ratios at harvest, producing bland, overly-alcoholic wines. Selecting grapevines for slower sugar accumulation could help maintain wine quality under future, hotter conditions, but these efforts have been stymied by our limited understanding of the traits determining sugar accumulation rates. Here, we measured traits characterizing the structure and anatomy of the sugar transport system – the phloem – in 16 winegrape cultivars and tested for relationships with sugar accumulation rates and cultivar climate classifications.

Étude des potentialités des terroirs viticoles: une démarche globale en zone A.O.C. L’exemple des Côtes du Rhône

Depuis près d’une quinzaine d’années, l’Appellation d’Origine Contrôlée (A.O.C.) Côtes du Rhône a engagé un vaste programme afin de mieux connaître et valoriser les potentialités des différents terroirs qui la composent.

Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

A common problem in wineries is haze formation after bottling, mainly caused by unstable proteins present in white wine. The most used material to eliminate these proteins is bentonite.

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.

The interplay between grape ripening and weather anomalies – A modeling exercise

Current climate change is increasing inter- and intra-annual variability in atmospheric conditions leading to grapevine phenological shifts as well altered grape ripening and composition at ripeness. This study aims to (i) detect weather anomalies within a long-term time series, (ii) model grape ripening revealing altered traits in time to target specific ripeness thresholds for four Vitis vinifera cultivars, and (iii) establish empirical relationships between ripening and weather anomalies with forecasting purposes. The Day of the Year (DOY) to reach specific grape ripeness targets was determined from time series of sugar concentrations, total acidity and pH collected from a private company in the period 2009-2021 in North-Eastern Italy. Non-linear models for the DOY to reach the specified ripeness thresholds were assessed for model efficiency (EF) and error of prediction (RMSE) in four grapevine cultivars (Merlot, Cabernet Sauvignon, Glera and Garganega). For each vintage and cultivar, advances or delays in DOY to target specified ripeness thresholds were assessed with respect to the average ripening dynamics. Long-term meteorological series monitored at ground weather station by means of hourly air temperature and rainfall data were analyzed. Climate statistics were obtained and for each time period (month, bimester, quarter and year) weather anomalies were identified. A linear regression analysis was performed to assess a possible correlation that may exist between ripening and weather anomalies. For each cultivar, ripeness advances or delays expressed in number of days to target the specific ripening threshold were assessed in relation to registered weather anomalies and the specific reference time period in the vintage. Precipitation of the warmest month and spring quarter are key to understanding the effect of climate change on sugar ripeness. Minimum temperatures of May-June bimester and maximum temperatures of spring quarter best correlate with altered total acidity evolution and pH increment during the ripening process, respectively.