Terroir 2008 banner
IVES 9 IVES Conference Series 9 Typology of wines in touch with environmental factors of terroirs and grapevine. Application to the Chinon vineyard

Typology of wines in touch with environmental factors of terroirs and grapevine. Application to the Chinon vineyard

Abstract

According to the vintage, it may be difficult for vine growers to make a decision regarding the type of wine in relation with the soils. The present work aims at proposing typology of wines to the Chinon growers, as a basis for reflection on the wine type in relation with the terroir units and the vintage water supply conditions.
In order to bring out factors associated to a wine structure, a first classification was established thanks to a multiple factorial analysis (MFA), taking into account three qualitative variables resulting from a survey on 506 cultural units of the Chinon vineyard. This first classification was then linked to a second one obtained through an ascendant hierarchical classification (AHC) carried out on an experimental network of the INRA-UVV unit of Angers (49-France). This network of 14 plots, distributed on different terroir units in the Chinon, Bourgueil and Saumur AOC, was monitored for physiological and meteorological data over the 2002-2005 period. The AHC used the data for a humid year (2004) and a dry year (2005). For each year, the experimental plots were grouped into three classes according to their pedoclimatic profiles.
By crossing the two classifications it was possible to elaborate a typology of the Chinon wines in relation with the environmental factors of the terroir units and the water supply conditions of the vintage.
This method, based only on two reference years and a wine typology for the Cabernet franc variety, was successful for analyzing the conditions for the elaboration of a given type of Chinon wine in relation to a precise cartography of the terroir units. This prospective process needs to be generalized.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

V. COURTIN (1), D. RIOUX (1), D. BOUTIN (2), S.CESBRON (1), A-C.KASPRIK (2)

(1) UMT Vinitera – Cellule Terroirs Viticoles, 42 rue Georges Morel, 49071 Beaucouzé Cédex
(2) Chambre d’Agriculture d’Indre-et-Loire, 38 rue Augustin Fresnel, BP 139, 37171 Chambray les Tours

Contact the author

Keywords

Chinon vineyard, terroir, vintage rainfall, wine typology

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Amino nitrogen content in grapes: the impact of crop limitation

As an essential element for grapevine development and yield, nitrogen is also involved in the winemaking process and largely affects wine composition. Grape must amino nitrogen deficiency affects the alcoholic fermentation kinetics and alters the development of wine aroma precursors. It is therefore essential to control and optimize nitrogen use efficiency by the plant to guarantee suitable grape nitrogen composition at harvest. Understanding the impact of environmental conditions and cultural practices on the plant nitrogen metabolism would allow us to better orientate our technical choices with the objective of quality and sustainability (less inputs, higher efficiency). This trial focuses on the impact of crop limitation – that is a common practice in European viticulture – on nitrogen distribution in the plant and particularly on grape nitrogen composition. A wide gradient of crop load was set up in a homogeneous plot of Chasselas (Vitis vinifera) in the experimental vineyard of Agroscope, Switzerland. Dry weight and nitrogen dynamics were monitored in the roots, trunk, canopy and grapes, during two consecutive years, using a 15N-labeling method. Grape amino nitrogen content was assessed in both years, at veraison and at harvest. The close relationship between fruits and roots in the maintenance of plant nitrogen balance was highlighted. Interestingly, grape nitrogen concentration remained unchanged regardless of crop load to the detriment of the growth and nitrogen content of the roots. Meanwhile, the size and the nitrogen concentration of the canopy were not affected. Leaf gas exchange rates were reduced in response to lower yield conditions, reducing carbon and nitrogen assimilation and increasing intrinsic water use efficiency. The must amino nitrogen profiles could be discriminated as a function of crop load. These findings demonstrate the impact of plant balance on grape nitrogen composition and contribute to the improvement of predictive models and sustainable cultural practices in perennial crops.

Design of an indicator of vine vigor potential conferred by soil (vipos), using a fuzzy expert system

Winegrowers must adapt more and more their viticultural practices in order to evolve toward a sustainable viticulture, to be competitive and to improve both the production methods and the quality and typicalness of wines. In this context, ‘Terroir’ studies in Loire Valley vineyards have allowed to build decision aid maps that can be used directly by growers to adjust their practices.

Use of Lactiplantibacillus plantarum (ML PrimeTm) to improve malolactic fermentation of catarratto wine subjected to long post-fermentative maceration.

AIM: Lactiplantibacillus plantarum species is wordwide used as starter for malolactic fermentation [1,2]. For the first time, in the present study, the use of L. plantarum (ML PrimeTM, Lallemand wine) to produce white wines with post-fermentative maceration extended until 60 days has been investigated.

Impact of oenological tannins on microvinifications affected by downy mildew

AIM: Vine diseases are still responsible for economic losses. Previous study in our laboratory, have shown effects of oenological tannins against Botrytis cinerea1,2. According to this, the aim was to evaluate the wine protection by oenological tannins against an another disease, the downy mildew. METHODS: During the 2020 vintage, infected grapes by downy mildew (Vitis vinifera cv. Merlot) were collected from the dispositive ResIntBio. The 100 kg were crushed, destemmed and dispatch into 10 aluminium tanks. SO2 was added at 3 g/hL. Oenological tannins (grape, quebracho, ellagitannin or gallotannin) were added at 100 g/hL into eight different tanks (4×2 tanks). The two last tanks were considered as control without addition of oenological tannins. Alcoholic fermentation was achieved with Actiflore 33® at 20 g/hL. Malolactic fermentation was achieved with Lactoenos B7at 1 g/hL. Finished wines were sulfited to obtain 45 mg/L of total SO2.