Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Global approach and application of terroir studies: product typicity and valorisation 9 Relationship between terroir and vegetative potential, productivity, yield and must composition of Vitis Vinífera L. Cvs. Cabernet Sauvignon under warm climate conditions

Relationship between terroir and vegetative potential, productivity, yield and must composition of Vitis Vinífera L. Cvs. Cabernet Sauvignon under warm climate conditions

Abstract

One cultivar could produce distinct wines with typical properties and qualities different depending on its cultivated and its mesoclimatic conditions.
This work has been developed in several zones of Cádiz town: Arcos de la Frontera, Jerez de la Frontera (Gibalbín), Jerez de la Frontera (Macharnudo), Jerez de la Frontera (Torrecera) and Sanlúcar de Barrameda. It was selected parcels with Cabernet Sauvignon cultivars and with similar growing characteristics. It was studied mesoclimatic factors, physiological and agronomic behaviour of the plant and grape, must properties of 2006 and 2007 harvest over all the zones.
Our mesoclimatic factors results show difference amount zones studied, these are strongly influenced mainly by the proximity or distance to the cost. This effect modified physiological characteristic of the plant and grape, must and wine properties, and its obtained significant differences over the several zones studied. Besides, it’s observed differences amount wines related to zones characteristic.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

SERRANO M.J., PUERTAS B., CANTOS E., GARCIA DE LUJAN A.

IFAPA Centro Rancho de la Merced Ctra. Trebujena, Km 3.2, 11471, Jerez de la Frontera, España. Consejería de Innovación, Ciencia y Empresa. Junta de Andalucía

Contact the author

Keywords

terroir, Cabernet Sauvignon, vegetative potencial, must

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The limonene-derived mint aroma compounds in red wines. Recent advances on analytical, chemical aspects and sensory aspects

In recent years, the ageing bouquet of red Bordeaux wines has been partially unveiled by a chemical and sensory point of view1–3. Minty and fresh notes were found to play a key role in the definition of this complex concept, moreover the freshness dimension in fine aged red wines plays an important role in typicity judgement by wine professionals

Isolated Antarctic soil yeasts with fermentative capacity with potential use in the wine industry

The wine industry is currently on the search for new aromas and less browning in their products. In the improvement process of wine, lower fermentation temperatures have been considered, however, the yeasts in the market cannot tolerate such temperatures

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.

SO2 consumption in white wine oxidation: approaches to low-input vinifications based on rapid electrochemical analyses and predictive enology

Oxidative stability is a critical factor in wine shelf-life. SO₂ is commonly added to wine due to its strong antioxidant activity, although there is a general push to reduce SO₂ use in vinification.