Terroir 2008 banner
IVES 9 IVES Conference Series 9 The wine country, between landscape and promoting tool. The example of Chinon and Saint-Nicolas-de-Bourgueil vineyards (France)

The wine country, between landscape and promoting tool. The example of Chinon and Saint-Nicolas-de-Bourgueil vineyards (France)

Abstract

When talking about wine, terroirs are never too far. The National Institute of Apellation d’Origine (INAO) defines it as a system inside of which interact a group of human factors, an agricultural production and a physical environment. This definition leads to see terroirs as entities deeply linked to the wine landscape. The latter is above all cultural, which means it was born not only from a land use outstand by the omnipresence of vineyards, but also mainly by men who make the wine, their knowledge and history. In a worldwide wine producing context, the notion of terroirs, full of culture and history, symbolizes the promotion of a product in an old traditional wine area. For this study, we followed the course of two Appellations d’Origine Conrôlée (AOC) situated in North West Touraine (West Centre of France), the Chinon and Saint Nicolas de Bourgueil wines. We realized a diachronic work starting from the end of the 19th century and the phylloxera crisis which marked a break in the French vineyard history, to nowadays strategies to face the new wines. This long lasting course naturally brought us to be interested in the links between terroirs and landscape. From this study, we concluded that the terroirs becomes the link between a more or less glorious past, which created an important wine culture, and a doubtful economical future. The terroirs notion flies to the wine economy’s assistance and perpetuates symbolic landscapes. On the contrary, the value of theses landscapes in particular thanks to the interventions of different actors such as the Mission Loire or the Parc Naturel Régional (PNR) Loire-Anjou-Touraine, takes part directly or indirectly in the promoting of the wine production and in the highlight of terroirs.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

 Jean Louis YENGUE (1,2), Cécile RIALLAND-JUIN (1,3), Sylvie SERVAIN-COURANT (1,4)

1) UMR CITERES 6173. 33, allée Ferdinand de Lesseps, BP 60449, 37204 Tours Cedex 03
(2) Maître de Conférences. Université de Tours, UFR Droit, Sciences économiques et sociales, Département de Géographie, BP 0607, 37206 Tours Cedex 03
(3) Maître de Conférences. Directrice du Master Professionnel Paysages et territoires ruraux. Université de Tours, UFR Droit, Sciences économiques et sociales, Département de Géographie, BP 0607, 37206 Tours Cedex 03
(4) Maître de conférences. Ecole Nationale Supérieure de la Nature et du Paysage, 9 rue de la Chocolaterie, cs 2902, 41029 Blois cedex

Contact the author

Keywords

Landscape, vineyards, terroir

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Genomic characterization of terpene biosynthetic genes in seven Vitis vinifera L. varieties 

Grapes (Vitis vinifera L.) are a fruit crop of high economic significance globally. Each grapevine cultivar is characterized by its distinctive grape aroma, affecting the wine quality. In several cultivars, the aroma is shaped by terpenoid (mono- and sesqui-terpenoids). Their profile is controlled by terpene synthases (TPS), which are part of a largely expanded gene family. How the variation in TPS copy number and sequence among cultivars determines terpenoid profiles of grapes remains largely unexplored. We annotated TPS in the haplotypes of seven genomes (Riesling, Albariño, Fiano, Gewürztraminer, Pinot Noir, Cabernet Sauvignon, and Viognier) using BLAST, GMAP, PFAM, and phylogenetic analyses. Further, TPS expression patterns and terpenoid accumulation during berry development and ripening were characterized using RNA-Seq and SPME/GC-MS platforms, respectively. Variation in TPS copy number exists among cultivars. Specifically, the TPS counts span a range of 251 to 150 for Riesling and Fiano, respectively, when considering combined haplotypes within each cultivar. Total terpenoid accumulation patterns throughout development were consistent among the five aromatic cultivars, marked by high concentrations in flowers, followed by a decline and subsequent rise during berry development and ripening, respectively. Conversely, non-aromatic cultivars exhibited no substantial increase in terpenoid concentration during ripening. Transcriptome and network analyses are currently employed to determine which TPS are expressed in the berry and determine the terpenoid profile of the specific cultivar. These findings shed light on the genomic determinants of grape aroma in major cultivars, and allow future studies focused on cultivar-specific responses of terpenoid biosynthesis to environmental stresses.

Optimisation de la fertilisation du Cot sur le Causse de l’Appellation d’Origine Contrôlée Cahors

The Appellation d’Origine Contrôlée area of ​​Cahors (Lot) covers an area of ​​21,700 ha, spread over 45 municipalities, of which only 4,300 are planted with vines. The main grape variety of this AOC is the Cot noir which represents 70% of the grape varieties, thus giving their typicality to the wines of this region; but despite this importance, to our knowledge, its physiology has remained relatively unstudied.