Terroir 2008 banner
IVES 9 IVES Conference Series 9 The wine country, between landscape and promoting tool. The example of Chinon and Saint-Nicolas-de-Bourgueil vineyards (France)

The wine country, between landscape and promoting tool. The example of Chinon and Saint-Nicolas-de-Bourgueil vineyards (France)

Abstract

When talking about wine, terroirs are never too far. The National Institute of Apellation d’Origine (INAO) defines it as a system inside of which interact a group of human factors, an agricultural production and a physical environment. This definition leads to see terroirs as entities deeply linked to the wine landscape. The latter is above all cultural, which means it was born not only from a land use outstand by the omnipresence of vineyards, but also mainly by men who make the wine, their knowledge and history. In a worldwide wine producing context, the notion of terroirs, full of culture and history, symbolizes the promotion of a product in an old traditional wine area. For this study, we followed the course of two Appellations d’Origine Conrôlée (AOC) situated in North West Touraine (West Centre of France), the Chinon and Saint Nicolas de Bourgueil wines. We realized a diachronic work starting from the end of the 19th century and the phylloxera crisis which marked a break in the French vineyard history, to nowadays strategies to face the new wines. This long lasting course naturally brought us to be interested in the links between terroirs and landscape. From this study, we concluded that the terroirs becomes the link between a more or less glorious past, which created an important wine culture, and a doubtful economical future. The terroirs notion flies to the wine economy’s assistance and perpetuates symbolic landscapes. On the contrary, the value of theses landscapes in particular thanks to the interventions of different actors such as the Mission Loire or the Parc Naturel Régional (PNR) Loire-Anjou-Touraine, takes part directly or indirectly in the promoting of the wine production and in the highlight of terroirs.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

 Jean Louis YENGUE (1,2), Cécile RIALLAND-JUIN (1,3), Sylvie SERVAIN-COURANT (1,4)

1) UMR CITERES 6173. 33, allée Ferdinand de Lesseps, BP 60449, 37204 Tours Cedex 03
(2) Maître de Conférences. Université de Tours, UFR Droit, Sciences économiques et sociales, Département de Géographie, BP 0607, 37206 Tours Cedex 03
(3) Maître de Conférences. Directrice du Master Professionnel Paysages et territoires ruraux. Université de Tours, UFR Droit, Sciences économiques et sociales, Département de Géographie, BP 0607, 37206 Tours Cedex 03
(4) Maître de conférences. Ecole Nationale Supérieure de la Nature et du Paysage, 9 rue de la Chocolaterie, cs 2902, 41029 Blois cedex

Contact the author

Keywords

Landscape, vineyards, terroir

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

La vinicultura en regiones tropicales Brasileras

La producción mundial de uvas para mesa es obtenida de viñedos localizados entre los paralelos 30 y 50º Latitud Norte y 30 y 40º Latitud Sur.

An analysis of wine geographical indications from the perspective of the theory of industrial organizations: what are the trade off?

From Porto and then through Bordeaux, Champagne and Bourgogne, wine geographical indications (gi) were the driving models for this form of protection of distinctive signs for collective use. Many studies present the benefits of recognizing a gi for a given region, the challenges of its implementation, as well as the possibilities of promoting territorial development.

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.