Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Integrated approach in terroir studies (Terroir 2006) 9 Topographic modeling with GIS at Serra Gaúcha, Brazil: elements to study viticultural terroir

Topographic modeling with GIS at Serra Gaúcha, Brazil: elements to study viticultural terroir

Abstract

Brazil is historically known at the international wine market as an importer, eventhough in the last decades there was an increase in quantity and quality of the internal production. Nowadays, about 40% of fine wines comsuption of the country are national ones. The main production region is called Serra Gaúcha, where the natural conditions are heterogeneous and viticulture is develloped in small properties, mainly done by the owners family. With the strong competition in internal and external market, there is a need to search distinct products in characteristic and typicality. In this context, the concept of terroir is important to drive an to match the grape variety and the cultural practices to the natural potential of each place. This work aim s to study the topographical components of the terroir at Serra Gaúcha using GIS. The study was based on a digital terrain model derived from 20 topographical map sheets in scale 1:50,000. The topographical variables analized were elevation, slope and aspect. Each variable was scores according to its suitability and integrated later on to generate topographical suitability map. The results show that 66% of the area has medium and 9% has high topographical suitability for grapes growth.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Eliana Casco SARMENTO (1), Eliseu WEBER (1), Heinrich HASENACK (1), Jorge TONIETTO (2) and Francisco MANDELLI (2)

(1) Universidade Federal do Rio Grande do Sul, Centro de Ecologia, av. Bento Gonçalves, 9.500, CEP 91501-970, Porto Alegre – RS, Brésil
(2) Embrapa, Centro Nacional de Pesquisa de Uva e Vinho. Rua Livramento, 515, 95700-000 Bento Gonçalves -RS, Brésil

Contact the author

Keywords

terroir, topography, GIS

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Know thy enemy: oxygen or storage temperature?

It is well known that high oxygen levels and high ageing temperatures are detrimental to white wine’s composition and ageing capacity. However, these results, though valuable

Il piano regolatore delle citta’ del vino: una metodologia di lavoro

Sono quattro i terni fondamentali di questo progetto: la sostenibilità; la conoscenza; la parte­cipazione come strumento anche di riduzione della burocrazia e il tema della coerenza delle politiche di settore e della collaborazione fra gli Enti.

Handbook of the charter of the universal holistic metaethics  sustainability 4.1c” for certification and warranty bio-métaétique 4.1c

Defined the new paradigm, the applied philosophy, the methodology, the algorithm of the “Charter for Universal Holistic MetaEthic Sustainability 4.1C17.18”, research has continued to define and write, an
handbook that should be:”Complete Universal Holistic MetaEthics 4.1C of descriptors” of the “Charter for Sustainability Universal Holistic MetaEthic 4.1C17.18” with basic and applicative indexing. In these activities and research we have involved over 3500 Italian and non-Italian people from the research world to simple but educated, enlightened and enlightening citizens and we have analyzed over 180000
entries concerning the descriptors above, which represent the basic “descriptors”.

The role of soil water holding capacity and plant water relations in zone/terroir expression

The spatial variability in soil type and depth and water holding capacity is very high in many viticultural regions of the world. Differences in rooting depths and water extraction profiles and their seasonal dynamics add additional variability and it is extremely difficult to deduct direct causal relationships between these factors and fruit

Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Irrigation is an essential tool for grape production, especially where rainfall does not meet the optimal water requirements needed to achieve yield and quality targets. Increased evaporative demand of grapevines due to changing climate conditions, and a growing awareness for sustainable farming, require the improvement of irrigation techniques to maximize water use efficiency, i.e. using less water to achieve the same yields or the same water but larger yields. In this study, the performance of Cabernet Sauvignon vines was compared under three irrigation techniques: conventional aboveground drip irrigation, subsurface irrigation installed directly under the vine row, and partial rootzone drying in which two subsurface lines were buried in the middle of the two interrow spacings on each side of the vine row with irrigation alternated between the two lines based on soil moisture content.