Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Integrated approach in terroir studies (Terroir 2006) 9 Topographic modeling with GIS at Serra Gaúcha, Brazil: elements to study viticultural terroir

Topographic modeling with GIS at Serra Gaúcha, Brazil: elements to study viticultural terroir

Abstract

Brazil is historically known at the international wine market as an importer, eventhough in the last decades there was an increase in quantity and quality of the internal production. Nowadays, about 40% of fine wines comsuption of the country are national ones. The main production region is called Serra Gaúcha, where the natural conditions are heterogeneous and viticulture is develloped in small properties, mainly done by the owners family. With the strong competition in internal and external market, there is a need to search distinct products in characteristic and typicality. In this context, the concept of terroir is important to drive an to match the grape variety and the cultural practices to the natural potential of each place. This work aim s to study the topographical components of the terroir at Serra Gaúcha using GIS. The study was based on a digital terrain model derived from 20 topographical map sheets in scale 1:50,000. The topographical variables analized were elevation, slope and aspect. Each variable was scores according to its suitability and integrated later on to generate topographical suitability map. The results show that 66% of the area has medium and 9% has high topographical suitability for grapes growth.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Eliana Casco SARMENTO (1), Eliseu WEBER (1), Heinrich HASENACK (1), Jorge TONIETTO (2) and Francisco MANDELLI (2)

(1) Universidade Federal do Rio Grande do Sul, Centro de Ecologia, av. Bento Gonçalves, 9.500, CEP 91501-970, Porto Alegre – RS, Brésil
(2) Embrapa, Centro Nacional de Pesquisa de Uva e Vinho. Rua Livramento, 515, 95700-000 Bento Gonçalves -RS, Brésil

Contact the author

Keywords

terroir, topography, GIS

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Highlighting a link between the structure of mannoproteins and their foaming properties in sparkling wines

Effervescence and foaming properties are the main visual characteristics assessed by the consumer during sparkling wine tasting.

The “green gold” @fem: assessing grapevine germplasm diversity to crossbreed the varieties of the future

Context and purpose of the study. To date over 3,000 grapevine accessions have been collected at Fondazione Edmund Mach (FEM).

Estudio de fertilidad en variedades blancas en Castilla-la Mancha

La adaptación de nuevas variedades a zonas de cultivo fuera de su área de origen presenta múltiples interrogantes. En Castilla-La Mancha se está produciendo en los últimos años una gran inquietud por la diversificación y la reconversión de variedades.

Above and below: soil moisture and soil temperature interact to alter grapevine water relations

The combined effect of soil moisture and soil temperature on grapevine physiology is gaining interest in the context of global warming.

From grapevines to extreme environments … and back?

I performed my PhD in grapevine physiology under the supervision of Dr. H. Medrano, standing in the vineyards from pre-dawn to sunrise during many hot, wet and sunny days with my colleagues J.M.E. and J.B. I also spent many days and nights facing ticks year-round working in Mediterranean macchias with J.Gu. and M.M. Later I was able to supervise PhD students on grapevines – like A.P. and M.T. – and on Mediterranean vegetation – like J.Gal. With the incorporation to the group of M.R.-C. ‘the puzzle’ was completed and, combining the aforementioned studies, we could conclude (more than 20 years ago) things like: (1) stomatal conductance is the best proxy for ‘water stress’ in studies on photosynthesis; (2) steady-state chlorophyll fluorescence retrieves photosynthesis under saturating light; (3) photoinhibition is not a major photosynthetic limitation under water stress; (4) mesophyll conductance instead is; and (5) mesophyll conductance is a major driver of leaf water use efficiency.