Terroir 2006 banner
IVES 9 IVES Conference Series 9 Visualization of wine origin, quality level and terroir by the landscape

Visualization of wine origin, quality level and terroir by the landscape

Abstract

The communication of the aims of a viticulture under the premise of terroir is presently discussed in a lot of wine-growing regions around the world. To encourage this discussion the differences in knowledge, understanding, and preference concerning wine and landscape should be regarded more closely: the wine should be perceived as a representative of its region and one of the most characteristic features of a region is the landscape. The basis of the concept presented is the integration of the landscape in the notion of terroir. The aim is the linking-up of attributes of the viticultural landscape with attributes of the wine in a system of increasing complexity: with increasing spatial resolution, the attributes and descriptors for landscape and wine increase, too. In a vertical line the landscape is regarded at different levels, from the region to the local territory to the vineyard site. It is assumed, that in the same manner, the sensory evaluation of wine is presented in an increasing complexity according to the increasing specification of the origin. In a horizontal line the typical of each level is described. This parallelism of landscape and sensory evaluation might contribute to a transparent communication of wine origin, quality, terroir, and sustainability to wine-grower and consumer.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Stephan REUTER

RLP AgroScience GmbH, Institute for Agroecology, Breitenweg 71, D-67435 Neustadt a.d.W./Germany

Contact the author

Keywords

communication, landscape, terroir, wine, origin

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Genomics and phenomics of root system architecture in grapevine

Adapting viticulture to climate change is crucial, as it presents significant challenges for future grape production.

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

Dialing in grapevine water stress indicators to better reflect holistic stress responses

Current remote sensing strategies rely heavily on reflectance data and energy balance modelling using thermal imagery to estimate crop water use and stress. These approaches show great promise for driving precision management decisions, but still require work to better understand how detected changes relate to meaningful physiological changes. Under water stress, grapevines exhibit a range of responses involving both biological and physical changes within leaves and canopies.

Cover crops sown in the inter-rows shape the weed communities in three vineyards across Italy

The use of cover crops (CCs) is widely proposed as an alternative to traditional soil management in vineyards to exploit a wide range of ecosystem services. The presence of a CC in the inter-row space is known to control spontaneous vegetation in vineyards, primarily through the biomass of the sown crop, which competes with other spontaneous species for soil resources.