Terroir aspects in development of quality of Egri bikavér

Abstract

Egri Bikavér (Bull’s Blood) is one of the most remarkable Hungarian red wines on inland and foreign markets as well. From the end of the 70’s the quality of Egri Bikavér was decreasing continually due to mass production. The concept of production of quality wines became general in the mid 90’s again and it resulted in a new Origin Control System, for the first time that of Egri Bikavér in Hungary. In the present study, the effects of different terroirs on wine quality are discussed in the case of Kékfrankos (Blaufränkisch) variety, which is the main component of the blending of Egri Bikavér. The experiments have been carried out in Eger wine region of Hungary. Soil characteristics, mesoclimate and phenological stages were examined at six growing sites. Grapevines in extreme growing sites were described with plant physiological parameters (net photosynthesis, water relations) and canopy structure was also studied. The grapes were harvested at the same time and winemaking technology was the same as well. Beyond the routine chemical analyses, the contents of anthocyanins and polyphenols were also analysed. During the sensory evaluation, the wines were described with radar plots of various parameters.

Remarkable differences were found between the growing sites based on the results of sensory and laboratory analyses. The differences can be explained by the results of soil properties, microclimate and plant physiological measurements. The results of this work may be helpful when the appellation origin control system of Egri Bikavér Superior Eger and Egri Bikavér Grand Superior « terroir » are to be developed.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Lajos GAL (1), Sándor ORBAN (2), Tibor GAL (3), Tamás POK (3), Zoltán SZILAGYI (1), Erzsébet SZUCS (1), Zsolt ZSOFI (1) and Borbála BALO (1)

(1) Research Institute for Viticulture and Enology of the Ministry of Agriculture, Eger, H-3301 Eger, P.O. Box 83, Hungary
(2) College of Eszterházy Károly; H-3300 Eger, Eszterházy tér 1, Hungary
(3) Egri Bormíves Céh (Union of the Best Wine Makers of Eger); H-3300 Eger, Nagykőporos Str. 11, Hungary

Contact the author

Keywords

soil, microclimate, vine physiology, wine quality, AOC of Egri Bikavér

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Salubrity of environment and zoning process: first consideration on the radioactivity of vineyard soils

La salubrité du milieu et des aliments intervient de plus en plus lourdement, et souvent négativement, sur la santé de l’homme, aussi bien sur l’individu que sur la société tout entière.

Modeling from functioning of a grape berry to the whole plant

Grape quality is a complex trait that mainly refers to berry chemical composition, including sugars, organic acids, phenolics, aroma and aroma precursor compounds.

Influence of different environments on grape phenolic and aromatic composition of threeclone of ‘nebbiolo’ (Vitis Vinifera L.)

The interaction between cultivar and growing environment is the base of wine quality and typicality. In recent time the behaviour of different clones within the same cultivar became another fundamental factor influencing the enological result. In order to clarify cultivar/clone/environment relations, a trial was carried out in 2008 studying the performances of three clones of ‘Nebbiolo’, grown in different environments: south-east Piedmont (hilly and characterized by a loamy and alkaline soil) and north-east Piedmont (a plain area characterized by a sandy and acidic soil).

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

Canopy microclimate vineyard variability in vineyards of the Lodi region of California, USA

Aim: The aim of this project was to evaluate the microclimatic effects on objective measures of fruit quality within different vigour classes of multiple vineyards and to compare the results across the Lodi region of California, USA.