Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Application of zoning to increase the value of terroirs (Terroir 2006) 9 Terroir aspects in development of quality of Egri bikavér

Terroir aspects in development of quality of Egri bikavér

Abstract

Egri Bikavér (Bull’s Blood) is one of the most remarkable Hungarian red wines on inland and foreign markets as well. From the end of the 70’s the quality of Egri Bikavér was decreasing continually due to mass production. The concept of production of quality wines became general in the mid 90’s again and it resulted in a new Origin Control System, for the first time that of Egri Bikavér in Hungary. In the present study, the effects of different terroirs on wine quality are discussed in the case of Kékfrankos (Blaufränkisch) variety, which is the main component of the blending of Egri Bikavér. The experiments have been carried out in Eger wine region of Hungary. Soil characteristics, mesoclimate and phenological stages were examined at six growing sites. Grapevines in extreme growing sites were described with plant physiological parameters (net photosynthesis, water relations) and canopy structure was also studied. The grapes were harvested at the same time and winemaking technology was the same as well. Beyond the routine chemical analyses, the contents of anthocyanins and polyphenols were also analysed. During the sensory evaluation, the wines were described with radar plots of various parameters.

Remarkable differences were found between the growing sites based on the results of sensory and laboratory analyses. The differences can be explained by the results of soil properties, microclimate and plant physiological measurements. The results of this work may be helpful when the appellation origin control system of Egri Bikavér Superior Eger and Egri Bikavér Grand Superior « terroir » are to be developed.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Lajos GAL (1), Sándor ORBAN (2), Tibor GAL (3), Tamás POK (3), Zoltán SZILAGYI (1), Erzsébet SZUCS (1), Zsolt ZSOFI (1) and Borbála BALO (1)

(1) Research Institute for Viticulture and Enology of the Ministry of Agriculture, Eger, H-3301 Eger, P.O. Box 83, Hungary
(2) College of Eszterházy Károly; H-3300 Eger, Eszterházy tér 1, Hungary
(3) Egri Bormíves Céh (Union of the Best Wine Makers of Eger); H-3300 Eger, Nagykőporos Str. 11, Hungary

Contact the author

Keywords

soil, microclimate, vine physiology, wine quality, AOC of Egri Bikavér

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

Macromolecular characterization of disease resistant red wine varieties (PIWI)

Pilzwiderstandsfähige (PIWI) are disease resistant Vitis vinifera interspecific hybrid varieties that are receiving increasing attention for ability to ripen in cool climates and their resistance to grapevine fungal diseases. Wines produced from these varieties have not been characterized, especially regarding their macromolecular composition. This study characterised and quantified colloid-forming molecules (proteins, polysaccharides and phenolics) of red PIWI wines produced in the UK. METHODS: In 2019 6 wines were made from the PIWI varieties Rondo, Cabernet Jura, Cabernet Cortis, Cabernet Noir, Regent and Cabertin grown at the Plumpton Rock Lodge Vineyard in Sussex (UK) and harvested at similar level of maturity (TSS, pH and TA). All juice was chaptalized to the same potential alcohol of 12%. Small scale winemaking (1L) was performed in quadruplicate using Bodum® coffee plungers to manage maceration [1]. Residual sugar content, pH, and titratable acidity were monitored during fermentation. For finished wines, the protein and polysaccharide content was measured by HPLC-SEC [2], while the total phenolic content was assessed using the Folin-Ciocalteau method [3]. The protein profile of the wines was further investigated by SDS-PAGE [4]. RESULTS: Fermentations (n=24) were all carried out to completion within 8 days.

Smoke taint: Understanding and addressing the compositional consequences of grapevine exposure to smoke

Climate change has become a major challenge for grape and wine production around the world

Techniques to study graft union formation in grapevine

Grapevines are grown grafted in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which were primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, grapevine rootstocks were also selected in relation their resistance to various abiotic stress conditions. Future rootstocks should have the potential to adapt viticulture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite to be able to use them with all the varieties. The objective of this work is to develop quantitative techniques to characterize graft union formation in grapevine.