Terroir 1996 banner
IVES 9 IVES Conference Series 9 Preliminary studies of zoning applications in Goriška Brda (Collio) winegrowing region, Slovenia

Preliminary studies of zoning applications in Goriška Brda (Collio) winegrowing region, Slovenia

Abstract

[English version below]

Goriška Brda est la région viticole située le plus à l’ouest de la Slovénie, attenante au Collio d’Italie. Goriška Brda (2020 ha de vignobles) a une longue tradition d’élevage viticole. La proximité de la mer Adriatique (Golfe de Trieste) au sud-ouest et des Alpes Juliennes au nord contribue à un climat caractéristique et unique qui influe sur la croissance et la fertilité de la vigne. La constitution des sols, un climat typique et un relief mouvementé provoquent des différences dans la production du raisin, sa quantité et sa qualité. L’utilisation du zonage ou du microzonage permettraient d’atténuer les influences des facteurs climatiques et du sol sur la production de la vigne ou d’en profiter. Pour évaluer la signification des différents facteurs, nous avons résumé et réuni les modèles de différents auteurs. Nous avons déterminé la somme des températures effectives d’après WINKLER l’index héliothermique selon BRANAS et HUGLIN, le coefficient thermique d’après Kerner, le coefficient hydrothermique selon SELJANOV et l’index bioclimatique avec l’aide des données hydrométéorologiques de la moyenne de trente ans et de la moyenne de sept stations météorologiques pour 2000 et 2001. Pour une évaluation plus exacte des influences, nous avons utilisé des cartes pédologiques, de relief et des cartes digitales cadastrales. Avec les photographies aériennes digitales et le registre des producteurs de raisin et de vin, nous y avons déterminé la superficie totale des vignobles, la manière de production et la diffusion des différentes espèces. À cause de sa diffusion et de sa production exigeante, nous avons incorporé dans le modèle le cépage rouge cv. ‘Merlot’. À l’intérieur de la région, les différences de températures moyennes mensuelles, les précipitations moyennes et l’humidité moyenne de l’air dans la croissance de la vigne ont été démontrées à l’aide des mesures faites par les stations hydrométéorologiques. Les résultats des coefficients et des index ont montré des différences partiellement significatives statistiquement entre les stations (Statgraphics 4.0). Les différences statistiquement significatives sont apparues dans la quantité et la qualité du produit dans les vignobles en expérimentation.

Goriška brda is the most west winegrowing region in Slovenia; geographically it is the extension of the Italian winegrowing area known as Collio. The region comprehends 2020 ha of vineyards and is known as a traditional viticulture land since ever. The Adriatic Sea from Southwest and Julian Alps from North booth form the unique climate that has an important role upon the grapevine performance. The uneven soil types, the unique climate and the folded slopes cause the differential grapevine reaction giving a variety of quantity and quality of grapes. Defining the region into small regional units-‘microregionalisation’ could be the way to minimize the bad and turn to our account the good factors of the soil-climate combination. Different models were taken to evaluate the influential factors. We calculated the Winkler’s heat summation above 10°C threshold, heliotermical indexes (BRANAS, HUGLIN), termical coefficient (KERNER), hidrotermical coefficient (SELJANINOV) and bioclimatic index using the two years (2000 and 2001) meteorological data of seven weather stations in the region as well as the average data of the 30 years period (1961-1990). The digital pedological, geological, relief and cadastre maps were used to locate the vineyards and the examined factors. The complete vineyard sites were supervised with the data from vineyard practice to the varieties structure and their range. We included cv. ‘Merlot’ in our experiment, because of its growing expansion and climate demanding. Differences in average month temperature, average precipitation and average relative humidity are present within the winegrowing région. Results of calculate indexes and coefficients proved significant statistic differences in the data among different meteorological stations (Statgraphics 4.0). Also quantity and quality differences of yield among vineyards are statistic significant. Ail climatic and harvest differences within Goriska brda winegrowing region confirm a necessity by dividing this region into smaller winegrowing places (cca. 80 ha) and winegrowing positions (cca. 15 ha). Such ‘microregionalisation’ assures proper, cheaper wine growing and better quality of grape.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Denis RUSJAN (1), doc. dr. Zora KOROSEC-KORUZA (1), prof. dr. Lucka KAJFEZ-BOGATAJ (2)

(1) University of Ljubljana, Biotechnical Faculty, Agronomy Department, Viticulture Group, Jamnikarjeva 101, Ljubljana, Slovenija
(2) University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, Ljubljana, Slovenija

Contact the author

Keywords

viticulture, région viticole, zonage, index météorologique, merlot
viticulture, winegrowing region, zonage, meteorological index, merlot

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Advanced phenology due to climate change is projected to shift precipitation patterns for key cultivar-region combinations in New Zealand

Context of the study. Shifts in grapevine phenology driven by temperature increase due to climate change may result in different rainfall profiles between phenological stages.

How does aromatic composition of red wines, resulting from varieties adapted to climate change, modulate fruity aroma?

One of the major issues for the wine sector is the impact of climate change linked to the increasing temperatures which affects physicochemical parameters of the grape varieties planted in Bordeaux vineyard and consequently, the quality of wine. In some varietals, the attenuation of their fresh fruity character is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive strategy on climate change, some winegrowers have initiated changes in the Bordeaux blend of vine varieties [2]. This study intends to explore the fruitiness in wines produced from grape varieties adapted to the future climate of Bordeaux. 10 commercial single–varietal wines from 2018 vintage made from the main grape varieties in the Bordeaux region (Cabernet franc, Cabernet-Sauvignon and Merlot) as well as from indigenous grape varieties from the Mediterranean basin, such as Cyprus (Yiannoudin), France (Syrah), Greece (Agiorgitiko and Xinomavro), Portugal (Touriga Nacional) and Spain (Garnacha and Tempranillo), were selected among 19 samples using sensory descriptive analyses. Both sensory and instrumental analyses were coupled, to investigate their fruity aroma expression. For sensory analysis, samples were prepared from wine, using a semi preparative HPLC method which preserves wine aroma and isolates fruity characteristics in 25 specific fractions [3,4]. Fractions of interest with intense fruity aromas were sensorially selected for each wine by a trained panel and mixed with ethanol and microfiltered water to obtain fruity aromatic reconstitutions (FAR) [5]. A free sorting task was applied to categorize FAR according to their similarities or dissimilarities, and different clusters were highlighted. Instrumental analysis of the different FAR and wines demonstrated variations in their molecular composition. Results obtained from sensory and gas chromatography analysis enrich the knowledge of the fruity expression of red wines from “new” grape varieties opening up new perspectives in wine technology, including blending, thus providing new tools for producers.

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.

Three Nebbiolo clone anthocyanin profile as affected by environmental conditions

Vitis vinifera ‘Nebbiolo’ cultivar is a 3’-subsituted anthocyanin prevalent wine variety. It is grown in North-West Italy for the production of high quality ageing wines. In the present work berry skin anthocyanin amounts and profiles of the clones CVT 308, CVT 423 and CVT 142 were studied in 2004 and in 2005 in four environmentally different locations of North-West Italy: Donnas (steep mountain area), Monforte (hilly area, with a pH of 8.1), Vezza (hilly area, with a pH of 8.2) and Lessona (plain area, with a pH of 4.8).

1H-NMR-based Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

The aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through untargeted and targeted 1H-NMR metabolomics. One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz. The spectra were recorded by applying the NOESYGPPS1D pulse sequency, to achieve water and ethanol signals suppression. No modification of the pH was performed to avoid any chemical alteration of the matrix. The generation of input variables for untargeted analysis was done via bucketing the spectra. The resulting dataset was preprocessed prior to perform unsupervised PCA, by means of MetaboAnalyst web-based tool suite. The identification of compounds for the targeted analysis was performed by comparison to pure compounds spectra by means of SMA plug-in of MNova 14.2.3 software. The dataset containing the concentrations (%) of identified compounds was subjected to one-way analysis of variance (ANOVA) to highlight significant differences among the wines. The untargeted analysis, carried out through the PCA, revealed a clear differentiation among the wines. The fragments of the spectra contributing mostly to the separation were attributed to flavonoids, aroma compounds and amino acids. The targeted analysis leaded to the identification of 68 compounds, whose concentrations were significant different among the wines. The results were related to soils physical-chemical analysis and showed that: 1) high concentrations of flavan-3-ols and flavonols are correlated with high clay content in soils; 2) high concentrations of anthocyanins, amino acids, and aroma compounds are correlated with neutral and moderately alkaline soil pH; 3) low concentrations of flavonoids and aroma compounds are correlated with high soil organic matter content and acidic pH. The 1H-NMR metabolomic analysis proved to be an excellent tool to discriminate between wines originating from grapes grown on different soil types and revealed that soils in the Mediterranean area exert a strong impact on the chemical composition of the wines.