Terroir 1996 banner
IVES 9 IVES Conference Series 9 Viticultural zoning applications at the detailed scale of a cooperative winery: terroirs in St­hilaire-d’Ozilhan (AOC Côtes-du-Rhône)

Viticultural zoning applications at the detailed scale of a cooperative winery: terroirs in St­hilaire-d’Ozilhan (AOC Côtes-du-Rhône)

Abstract

[English version below]

La maîtrise de la typicité du vin s’élabore au niveau local ou communal d’une exploitation viticole et/ou d’une cave, unité de vinification. La cave coopérative de Saint-Hilaire­-d’Ozilhan (AOC Côtes-du-Rhône), dont le territoire communal s’étend sur une superficie de 1 670 ha, couvre près de 310 ha cultivés en vigne. Elle réalise des vinifications «au terroir», en utilisant des regroupements d’unités de sol en 9 unités de terroir potentiellement viticoles, définies en s’appuyant sur la parenté des substrats. Diverses sélections d’une même unité peuvent aboutir aussi à des vins différents, ce qui suggère une hétérogénéité spatiale de certaines unités définies. Une carte des terroirs issue d’une approche par l’analyse spatiale géomorpho-pédologique est par ailleurs disponible pour la cave coopérative, munie de son niveau plus détaillé, la carte des unités de pédopaysage. La comparaison des différentes cartes disponibles suggère diverses options applicables aux sélections de vendange. Par ailleurs, l’utilisation de fonctions de pédotransfert a permis d’estimer la réserve utile.

Wine quality needs to be monitored at the detailed local scale of the winery or viticultural farm territory. The territory covered by the cooperative winery of Saint-Hilaire-d’Ozilhan (AOC Côtes-du-Rhône), is a 1 670 hectares-commune area, nearly 310 hectares of which are grown into vine. This winery has been working for nearly a decade on geographical and enological mana gement. Wine-making processes are based on 9 “terroir” land divisions, defined with the substrata indicated in soil map units. Distinct selections of the same unit can lead to different wines, thus indicating the spatial heterogeneity of some of the units defined.
A zoning obtained from soil and landform spatial analysis, is available for this winery from another source, with a detailed soil landscape map. The comparison of the varied documents available may apply to different harvest selections.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

E. VAUDOUR (1), P. PERNES (1), B. RODRIGUEZ-LOVELLE (2)

(1) Institut National Agronomique Paris-Grignon – UFR AGER/DMOS- Centre de Grignon BP0I – 78850 Thiverval Grignon- France
(2) Syndicat des Vignerons des Côtes-du-Rhône- Maison des Vins – 6, rue des Trois Faucons – 84000 Avignon- France

Contact the author

Keywords

zonage, terroir, niveau communal, cave coop rative, réserve utile
zoning, terroir, local scale, cooperative winery, available water capacity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Impact of non-Saccharomyces in malolactic fermentation of white and red winemaking

Nowadays the use of non-Saccharomyces as starters of alcoholic fermentation (AF) has increased because of the modulation of the organoleptic profile of wines

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

Modulation of berry composition by different vineyard management practices

High concentration of sugars in grapes and alcohol in wines is one of the consequences of climate change on viticulture production in several wine-growing regions. In order to investigate the possibilities of adaptation of vineyard management practices aimed to reduce the accumulation of sugar during the maturation phase without reducing the accumulation of anthocyanins in grapes, a study with severe shoot trimming, shoot thinning, cluster thinning and date of harvest was conducted on Merlot variety in Istria region (Croatia), under the Mediterranean climate. Four factors which may affect grape maturation and its composition at harvest were investigated in a two-years experiment; severe shoot trimming applied at veraison when >80% of berries changed colour (in comparison to untreated control), shoot thinning (0 and 30%), cluster thinning (0 and 30%), and the date of harvest (early and standard harvest dates). Shoot thinning had no significant impact on berry composition, despite the obtained reduction in yield per vine. Lower Brix in grapes were obtained with earlier harvest date and if no cluster thinning was applied, although at the same time a reduction in the concentration of anthocyanins in berries was observed in these treatments. On the other hand, if severe shoot trimming was applied when >80% of berries changed colour, a reduction of Brix was obtained without a negative impact on berry anthocyanins concentration. We conclude that in cases when undesirably high sugar concentrations at harvest are expected, severe shoot trimming at 80% veraison may effectively be used in order to obtain moderate sugar concentration in berries together with the adequate phenolic composition.

Présentation d’une méthodologie de caractérisation des terroirs et valorisation par l’étude de l’effet terroir sur la typicité et l’originalité du produit vin dans la région des Côtes du Rhône

In the global economic context, an Appellation d’Origine Contrôlée must now more than ever control the typicity and originality of the wines it produces. It is in this spirit that the Côtes du Rhône have decided to acquire the means necessary for this control.