Terroir 1996 banner
IVES 9 IVES Conference Series 9 Viticultural zoning applications at the detailed scale of a cooperative winery: terroirs in St­hilaire-d’Ozilhan (AOC Côtes-du-Rhône)

Viticultural zoning applications at the detailed scale of a cooperative winery: terroirs in St­hilaire-d’Ozilhan (AOC Côtes-du-Rhône)

Abstract

[English version below]

La maîtrise de la typicité du vin s’élabore au niveau local ou communal d’une exploitation viticole et/ou d’une cave, unité de vinification. La cave coopérative de Saint-Hilaire­-d’Ozilhan (AOC Côtes-du-Rhône), dont le territoire communal s’étend sur une superficie de 1 670 ha, couvre près de 310 ha cultivés en vigne. Elle réalise des vinifications «au terroir», en utilisant des regroupements d’unités de sol en 9 unités de terroir potentiellement viticoles, définies en s’appuyant sur la parenté des substrats. Diverses sélections d’une même unité peuvent aboutir aussi à des vins différents, ce qui suggère une hétérogénéité spatiale de certaines unités définies. Une carte des terroirs issue d’une approche par l’analyse spatiale géomorpho-pédologique est par ailleurs disponible pour la cave coopérative, munie de son niveau plus détaillé, la carte des unités de pédopaysage. La comparaison des différentes cartes disponibles suggère diverses options applicables aux sélections de vendange. Par ailleurs, l’utilisation de fonctions de pédotransfert a permis d’estimer la réserve utile.

Wine quality needs to be monitored at the detailed local scale of the winery or viticultural farm territory. The territory covered by the cooperative winery of Saint-Hilaire-d’Ozilhan (AOC Côtes-du-Rhône), is a 1 670 hectares-commune area, nearly 310 hectares of which are grown into vine. This winery has been working for nearly a decade on geographical and enological mana gement. Wine-making processes are based on 9 “terroir” land divisions, defined with the substrata indicated in soil map units. Distinct selections of the same unit can lead to different wines, thus indicating the spatial heterogeneity of some of the units defined.
A zoning obtained from soil and landform spatial analysis, is available for this winery from another source, with a detailed soil landscape map. The comparison of the varied documents available may apply to different harvest selections.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

E. VAUDOUR (1), P. PERNES (1), B. RODRIGUEZ-LOVELLE (2)

(1) Institut National Agronomique Paris-Grignon – UFR AGER/DMOS- Centre de Grignon BP0I – 78850 Thiverval Grignon- France
(2) Syndicat des Vignerons des Côtes-du-Rhône- Maison des Vins – 6, rue des Trois Faucons – 84000 Avignon- France

Contact the author

Keywords

zonage, terroir, niveau communal, cave coop rative, réserve utile
zoning, terroir, local scale, cooperative winery, available water capacity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.

The impact of decadal cold waves over Europe on future viticultural practices

A crucial issue associated with the long-term impact of climate change in viticulture concerns the capacity of resilience of the typical varieties currently cultivated in traditional areas. Indeed, regions that are currently characterized by optimal climatic conditions can cease to be so in the future. At the same time, new premium wine production regions may arise north of 50oN. Both these threats and opportunities are based on the assessment of a very likely gradual temperature increase along the 21st century, resulting from the ensemble mean of the state-of-the-art climate projections. Such an assessment is orienting decision-makers and stakeholders to rethink the grapevine cultivation zoning, prefiguring, for each variety, a shift at higher latitudes and/or at higher altitudes areas.

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.

Addition of Malvasia di Candia Aromatica must and marcs to Golden Ale beer wort to obtain different Italian Grape Ales

Nowadays, the recovery of secondary resources of wine industry is insufficient and the developing of new products and adjuvants from secondary raw materials could become a relevant sector of research. The re-use of byproducts derived from winemaking could improve the sustainability of wine industry and give additional value to other food industries

Characterization of vineyard sites for quality wine production. German experiences

The quality of grapevines measured by yield and must density in the northern part of Europe conditons can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another. One hundred year observations in Johannisberg from 1890 to 1991 demonstrate for the yield formation a clear dependancy from the year combined with a steady increase in productivity; latter a proof of positive clonal selection efforts.