terclim by ICS banner
IVES 9 IVES Conference Series 9 Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

Abstract

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Luca Brillante1, Greg Jones2 and Diego Tomasi3

1Department of Viticulture & Enology, California State University, Fresno, USA
2Abacela Vineyard and Winery, Roseburg, OR, USA
3CREA-VE Research Centre for Viticulture and Enology, Conegliano, Italy

Contact the author

Keywords

phenology, climate change, time series, imputation methods, recurrent neural networks

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Relevance of an immunoassay test for rapid detection of Botrytis cinerea in ‘Ugni blanc’ musts and wines

A new immunoassay kit, called Botrytis Lateral Flow Device has been tested to detect Botrytis cinerea on musts and wines. The comparison of the immunoassay result with the quantitative analysis of usual markers (gluconic acid, sugars and polyols) showed the relevance of this innovative tool.

Représentation holistique d’une dynamique pluridisciplinaire suite à la cartographie des sols en Beaujolais

Une démarche de cartographie des sols a été engagée en 2009 par l’interprofession des vins du Beaujolais à l’initiative des professionnels de la région. A fin 2015

Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

The main objective is to unravel the yeast biosynthetic pathways for MEL, SER and HT by using the respective labelled amino acids precursors: 15N2-L tryptophan and 13C-tyrosine.
The alcoholic fermentation experiments are performed with two different commercial
S cereviseae yeasts using synthetic must with the addition of the labelled compounds and the bioactive compounds were followed during the fermentation process. Six biological replicates of the fermentations were considered. MEL, SER and HT were analysed by UHPLC coupled to High Resolution Mass Spectrometry (HRMS). Accurate mass determination allowed to unequivocally distinguishing labelled and unlabelled compounds.

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).

Comparison of integrated, organic and biodynamic viticultural practices

In this video recording of the IVES science meeting 2021, Johanna Döring (Hochschule Geisenheim University Department of General and Organic Viticulture, Geisenheim, Germany) speaks about the comparison of integrated, organic and biodynamic viticultural practices. This presentation is based on an original article accessible for free on OENO One.