terclim by ICS banner
IVES 9 IVES Conference Series 9 Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

Abstract

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Luca Brillante1, Greg Jones2 and Diego Tomasi3

1Department of Viticulture & Enology, California State University, Fresno, USA
2Abacela Vineyard and Winery, Roseburg, OR, USA
3CREA-VE Research Centre for Viticulture and Enology, Conegliano, Italy

Contact the author

Keywords

phenology, climate change, time series, imputation methods, recurrent neural networks

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

Aspetti legislativi di settore: e politiche comunitarie

Sulla base del tema assegnatomi è stata forte la tentazione di addentrarmi nel labirinto della regolamentazione comunitaria. Per buona pace degli intervenuti ho ritenuto, pero, poco utile una elencazione di numeri e riferimenti normativi che saranno brevemente riassunti in una tabella (TAB 1),

Zonificación climática de las D.O. Rueda y Toro y vinos de la tierra de medina del campo

La producción vitícola es el resultado de una serie de factores influyentes (variedad, patron) dentro de un medio ecológico­-climatico-edafico, en el que se interactua por medio de técnicas de cultivo adecuadas.

Detection of spider mite using artificial intelligence in digital viticulture

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions. 

Yeasts protein extracts: new low impact tool for wine protein stability

Yeast protein extracts (ypes) have flocculating properties, allowing clarification of musts and wines. They are already authorized by oiv for fining purposes with a maximum dosage limit of 60 g/hl for red wines, and 30 g/hl for musts, white and rosè wines. The extraction of ypes from the cytoplasm of yeasts (saccharomyces spp) cells is defined by the resolution oiv oeno 452-2012, that indicate also some specification of the final product.