WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Oral presentations 9 Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Abstract

Tannins are very important for grape and wine quality, since they participate in several organoleptic wine characteristics such as astringency perception, bitterness, and the colour stability. The compositions in tannins in grapes and wines differs between seeds and skins. Tannin seeds contain a higher concentration of tannins than skin and has been associated with a coarse and more tannic notes in wines, by contrast, tannin skin are related to a greater softness in the wines.

Several strategies can be used to improve the tannin composition in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost (Gil-Muñoz et al. 2021).

This study observes the impact on tannin composition of must and wine of Monastrell grapes that have been treated with methyl jasmonate (MeJ) and methyl jasmonate n-doped calcium phosphate nanoparticles (nano-MeJ). The first objective of this study was to compare the effect of these treatments to determine if the tannin composition of the berries and wines increased. The second aim was to determine if the nanoparticle treatments showed similar effects to way treatments so that the ones which are more efficient and sustainable from an agricultural point of view can be selected. 

The experiments were conducted in a randomized block design during three consecutive seasons (2019-2021), in two foliar treatments were applied to the plants in spray form as a water suspension of MeJ (10 mM) and nano-MeJ (1 mM) at veraison. Control plants were sprayed with aqueous solution of Tween 80 alone. Tannins were analysed according to the methodology shown in Gil-Muñoz et al. (2018).

The results showed an increase in the values of total tannins in grapes for treatments except for nano-MeJ in the last year, although these were not statistically significant. Regarding wines, a greater increase was only obtained for treatments in 2019, in the other two seasons, this increase was only evident for MeJ. With respect to the epigallocatechin content was higher in nano-MeJ treated grapes in 2019 and 2020. Finally, this compounds was increased in wines from both treated grapes in 2019 and 2021, but only for in wines from MeJ treated grapes in 2020.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Rocio Gil Muñoz, Maria José, Gimenez Bañon, Diego Fernando, Paladines-Quezada, Juan Daniel, Moreno Olivares, Juan Antonio, Bleda-Sánchez, Jose Ignacio, Fernandez- Fernandez, Belen, Parra-Torrejón, Gloria Belén, Ramirez-Rodriguez, Jose Manuel, Delgado-López

Presenting author

Rocio Gil Muñoz – Instituto Murciano De Investigación Y Desarrollo Agrario Y Medioambiental

Instituto Murciano De Investigación Y Desarrollo Agrario Y Medioambiental | Universidad De Granada

Contact the author

Keywords

Elicitors-nanotechnology-tannins-grapes-wines

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Prise en compte et mutations de l’acidité volatile au XXe siècle : les évolutions règlementaires, scientifiques et qualitatives d’un composé du vin au regard de l’histoire

Les composés actifs du vin ont, jusqu’ici, peu fait l’objet d’études sur le temps long. Le développement de l’œnologie, de l’analyse des vins et, de manière concomitante, l’essor des règlementations vinicoles au XXe siècle révèlent pourtant au grand jour le poids de ces composés et leurs évolutions. Dans cette communication, nous souhaitons montrer comment l’acidité volatile des vins,

Inhibitory effect of sulfur dioxide, ascorbic acid and glutathione on browning caused by laccase activity

AIM: The aim of this work was to study the inhibitory effect of the three most frequently used wine antioxidants – sulfur dioxide, ascorbic acid and glutathione – on the kinetics of browning caused by Botrytis cinerea laccase using a grape juice synthetic model in which (-)-epicatechin was the substrate.

Local adaptation tools to ensure the viticultural sustainability in a changing climate

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

A generic method to analyze vine water deficit continuously

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].