WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Impact of aspects of the polysaccharide structure of mannoproteins on their interactions with Enological Tannins

Impact of aspects of the polysaccharide structure of mannoproteins on their interactions with Enological Tannins

Abstract

Mannoproteins (MPs) with different structure of their polysaccharide part (branching, substitutions, …) were used to better understand the impact of characteristics of the usual structure of MPs when interacting with Grape Seed Tannins (ST). 

From four Saccharomyces cerevisiae strains we obtain four MP pools: an enological strain LMD47 (presenting high levels of N-glycosylation and O-Mannosylation), a wild-type BY4742 strain (used as reference), and its mutants ΔMnn4 (with no mannosyl-phosphorylation) and ΔMnn2 (with a linear N-glycosylation backbone). The extraction method applied, with the exclusive enzymatic activity of Endo-β-1,3-Glucanase of Trichoderma sp. (E-LAMSE, Megazym), preserved the indigenous structure of mannoproteins to their utmost extent. Characterizations of the pools confirmed differences among the polysaccharide moieties of the four MPs regarding charge, mannose/glucose ratio, and branching degrees but no differences between their protein moieties.

The formation and evolution of colloidal aggregates due to interactions between MPs and ST at different concentrations were evaluated through Dynamic Light Scattering (DLS), while the number of colloidal aggregates formed and the particle size distribution were assessed by Nanoparticle Tracking Analysis (NTA). The possible differences in the mechanisms of interaction among the four kinds of mannoproteins were analyzed through Isothermal Titration Calorimetry (ITC).

DLS and NTA experiments indicated an immediate formation of colloidal aggregates, in which the final particle size and concentration were dependent on the ST/MP ratio. Whenever the latter was extremely high, a very progressive flocculation related to a reversible aggregation occurred. The kinetics of this instability phenomenon was dependent on the polysaccharide structure of MPs. ITC analysis showed two different kinds of interactions: an intense exothermic one susceptible to temperature, and a much weaker interaction (as for enthalpy release) less thermo-dependent, possibly related to H-bonding and hydrophobic interactions, respectively. 

Neither the absence of mannosyl phosphate groups, the absence of ramifications on the outer chains of the N-glycosylation, nor the protein glycosylation overexpression seem to play a decisive role in those interactions. However, these structural differences affected the stability of MP-ST colloids formed at specific concentrations and slightly changed the enthalpy exchange profiles.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Assunção Bicca, Céline, Poncet-Legrand, Julie, Mekoue Nguela, Thierry, Doco, Aude, Vernhet

Presenting author

Assunção Bicca – Université de Montpellier

Unité Mixte de Recherche Sciences Pour l’OEnologie, Institut Agro, INRAE, Université de Montpellier, Montpellier, France | Lallemand SAS | Unité Mixte de Recherche Sciences Pour l’OEnologie

Contact the author

Keywords

Mannoproteins – Colloidal Stability – Polysaccharide/Polyphenol Interactions – Wine macromolecules

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Evaluation des aptitudes œnologiques des raisins rouges avec l’étude de certains nouveaux indices de maturité phénolique

Pour obtenir des vins d’une certaine gamme, il faut connaître les paramètres liés à la composition de la baie et introduire non seulement les paramètres classiques, c’est-à-dire sucres et acidité, mais aussi les paramètres qui tiennent compte

The developement of vineyard zonation and demarcation in South Africa

L’histoire de viticulture de l’Afrique du Sud embrasse 340 ans, et a commencé, à la province du Cap, où les colonisateurs hollandais ont planté les premières vignes. L’arrivée des Huguenots français en 1688 a avancé, le développement.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

Spectral characterisation of fungal diseases on Vitis vinifera leaves

Aims: The aims of this study were to (1) detect alterations in the reflectance spectra of vines with fungal diseases, (2) map these alterations, and (3) determine the best wavelengths which may be used as early indicators of fungal diseases in vines.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.