WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Wine lees: characterization and valorization by kombucha fermentation

Wine lees: characterization and valorization by kombucha fermentation

Abstract

Winemaking generates various types of residues (vine shoots, stalks, pomace, wine lees and filtration cakes) which can have a notable environmental and economic impact. Wine by-products are rich in bioactive compounds and therefore their valorization can be beneficial on different levels. Lees are the material that settles after vinification, and consist mainly of yeast cells, grape skins, tartrates, phenolic compounds, and other residues. The objective of this study was to valorize the wine lees by the Kombucha process in order to create a new beverage. 

Kombucha is a traditional beverage obtained by the fermentation of sweetened tea with a symbiotic culture of yeast and bacteria. The consumption of kombucha is associated with many health benefits due to its rich composition in bioactive compounds. Different substrates were used as raw material for Kombucha fermentation, and the obtained beverages displayed an increase in the concentration of biological compounds and enhancement of health activities. 

Red wine lees used in this study presented a pH of 3.31 ± 0.01, a total acidity of 2.86 ± 0.45 g/L (sulfuric acid equivalent), a total polyphenol content of 2041 ± 233.35 mg/L GAE (Gallic acid equivalent), and an antioxidant activity of 59.03 ± 4.25 % inhibition against DPPH radicals. 

In order to ferment the wines lees by Kombucha Scoby, wine lees were subject to two dilutions of 1:2 and 1:4. These dilutions were fermented for 24 days at 25°C. Samples were taken each 3 days in order to monitor the physico-chemical evolution of the new beverage. Results showed that the sugar consumption (70 g/L) was not complete after 24 days of fermentation. pH of the new beverage is 2.88. Fermentation time and substrate concentration influenced the studied variables, for instance the strongest antioxidant activity was detected on the 9th day for the lees kombucha diluted to the half (93.27%) whereas the highest quantity of polyphenols was found on day 21 (1599.30 mg/L GAE).

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Youssef El Rayess, Nathalie Barakat, Sandra Beaufort, Samar Azzi-Achkouty, Ziad Rizk, Chantal Ghanem, Abdo Tannoury, Jalloul Bouajila, Patricia Taillandier, Youssef El Rayess

Presenting author

Youssef El Rayess – Department of Agriculture and Food Engineering, Holy spirit University of Kaslik, Jounieh, Lebanon

Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France | Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France | Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon | Lebanese Agricultural Research Institute, Fanar Station, P.O. Box 90-1965, Jdeidet El-Metn, Fanar, Lebanon | Lebanese Agricultural Research Institute, Fanar Station, P.O. Box 90-1965, Jdeidet El-Metn, Fanar, Lebanon | Lebanese Agricultural Research Institute, Fanar Station, P.O. Box 90-1965, Jdeidet El-Metn, Fanar, Lebanon | Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France | Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France | Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon 

Contact the author

Keywords

wine lees-Kombucha-polyphenols-antioxidants

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Climate variability and its effects in the Penedès vineyard region (NE Spain)

This study present a detailed analysis of the rainfall and temperature changes in the Penedès region in the period 1995/ 96 – 2008/09, in comparison with the trends observed during the last 50 years, and its implications on phenology and yield.

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.

Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Initial results are presented of research into the relationship between climate variability and viticulture in New Zealand vineyards. Atmospheric modelling and analytical tools are being developed to improve adaptation of viticultural practices and grape varieties to current and future climate.

The influence of site aspect and pruning types on Pinot Noir phenology and shoot growth

Aim: Managing the influence that terroir in vineyards has on vine development depends on improving our understanding the effect of the interaction of within-site variability, within-vine variability, and management practices (such as pruning types) on phenology and vine development. This study evaluates the consequence of site aspect

1H-NMR-based Untargeted Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

Untargeted metabolomics has proven to be an effective method to study the impact of the terroir on metabolic profile of wines. In this context, the aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through 1H-NMR metabolomics combined with chemometrics.Grapes from Nero d’Avola L. red cultivar cultivated on four different soil types were separately vinified to obtain four different red wines.One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz