IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Deciphering the color of rosé wines using polyphenol targeted metabolomics

Deciphering the color of rosé wines using polyphenol targeted metabolomics

Abstract

The color of rosés wines is extremely diverse  and a key element in their marketing. It is  due to the presence of red anthocyanins extracted from grape skins and pigments formed from them and other wine constituents during wine-making. To explore the link between composition and color, 268 commercial rosé wines were analyzed by ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry analysis in the MRM (multiple reaction monitoring) mode [1] and their color characterized using spectrophotometry. The concentration of 125 phenolic compounds was thus determined and related to color parameters using chemometrics [2]. Color intensity is primarily determined by the extent of polyphenol extraction from the grapes. However, different compositions characterize the different color styles. Dark rosé wines contain high concentrations of anthocyanins and flavanols and their color, like that of red wines, is attributable to these molecules and their reaction products. In contrast, major phenolic compounds in light rosé wines are hydroxycinnamic acids and their salmon shade is mostly due to phenylpyranoanthocyanins and carboxypyranoanthocyanin pigments, resulting from reactions of anthocyanins, respectively with these phenolic acids and with pyruvic acid, a yeast metabolite. Redness of intermediate color wines is associated to anthocyanins and carboxypyranoanthocyanins while yellowness seems related to oxidation.The same approach was applied to monitor color and composition changes during fermentation of six rosé musts made from Grenache, Cinsault and Syrah grapes. Hydroxycinnamic acids were the major phenolic compounds in Grenache and Cinsault musts while the Syrah musts showed higher concentrations of anthocyanins and flavanols, indicating that polyphenol extraction is not only related to maceration conditions but also depends on varietal characteristics. These differences resulted in different proportions of derived pigments as observed on the rosé wine collection [2]. Comparison of the spectrophotometric and MRM data indicated that the majority of phenolic compounds in the Cinsault musts were not among the compounds targeted by MRM. Size exclusion chromatography (SEC) analysis of the musts showed different profiles for the three varieties, Cinsault musts containing large proportions of oligomeric compounds likely derived from hydroxycinnamates. These larger molecular weight compounds were no longer detected after fermentation and were partly recovered from the yeast lees. Comparison of the SEC profiles obtained at different wavelengths also suggest that pigments of Cinsault and Grenache are hydroxycinnamic acid derivatives, likely resulting from enzymatic oxidation. Non targeted metabolomics approaches provided further information on these pigments.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cheynier, Véronique1, Leborgne Cécile2, Ducasse Marie-Agnès3, Meudec Emmanuelle1, Verbaere Arnaud1, Sommerer Nicolas1, Boulet Jean-Claude1, Masson Gilles2 and Mouret Jean-Roch11

SPO, INRAE, Univ Montpellier, Institut Agro, INRAE, PROBE research infrastructure, PFP Polyphenol Analytical Facility
2 SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France; Institut Français de la Vigne et du Vin, Centre du rosé, Vidauban, France
3 Institut Français de la Vigne et du Vin, UMT OENOTYPAGE, Domaine de Pech Rouge, Gruissan, France

Contact the author

Keywords

UHPLC-MS/MS, polyphenols, rosé wines, color, chemometrics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety. The aroma is one of the most important quality attributes of wine. Volatile compounds of this beverage may come from the grape (varietal aromas), from the fermentation process, from the ageing. The aromatic compounds are found in the grape in two forms: as free volatile compounds and as non-volatile compounds. The last ones, are aroma precursors present mainly as glycoconjugates formed by a sugar and an aglycone…

Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Climate change critically challenges viticulture. Among other threats, extreme and increasingly frequent heatwaves cause irreversible burns on leaves and bunches. A series of observations and experiments was conducted to better understand how leaf burns originate and whether genetics or management practices can mitigate them. In 2019, a panel of 279 potted cultivars of Vitis vinifera L. grown outdoors suffered a heat peak and a genetic origin of leaf burn variability was demonstrated. To deeper explore this variability, fourteen cultivars were selected for their contrasting responses to high temperatures, and detached leaves were submitted to a controlled increase in temperature up to 50 °C in a growth chamber.

Effect of Botrytis cinerea and esca on phenolic composition of berries and wines

This study showed that Botrytis cinerea could degrade the phenolic compounds by its enzymatic activity. It led to a diminution of skin’s anthocyanins from 20 % to 50 % and an increase level up to 40 % of individual proanthocyanins, 30 % of the %G and 25% of the %P.

How to improve the mouthfeel of wines obtained by excessive tannin extraction

Red wines felt as astringent and bitter generally show high content of tannins due to grape phenolic compounds’ extraction in the maceration process. Among different enological practices, mannoproteins have been shown to improve the mouthfeel of red wines (1) and the color (2,3). In this work, we evaluated the effect of mannoproteins on the mouthfeel profile of Sangiovese wines obtained by excessive tannin extraction.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.