IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Deciphering the color of rosé wines using polyphenol targeted metabolomics

Deciphering the color of rosé wines using polyphenol targeted metabolomics

Abstract

The color of rosés wines is extremely diverse  and a key element in their marketing. It is  due to the presence of red anthocyanins extracted from grape skins and pigments formed from them and other wine constituents during wine-making. To explore the link between composition and color, 268 commercial rosé wines were analyzed by ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry analysis in the MRM (multiple reaction monitoring) mode [1] and their color characterized using spectrophotometry. The concentration of 125 phenolic compounds was thus determined and related to color parameters using chemometrics [2]. Color intensity is primarily determined by the extent of polyphenol extraction from the grapes. However, different compositions characterize the different color styles. Dark rosé wines contain high concentrations of anthocyanins and flavanols and their color, like that of red wines, is attributable to these molecules and their reaction products. In contrast, major phenolic compounds in light rosé wines are hydroxycinnamic acids and their salmon shade is mostly due to phenylpyranoanthocyanins and carboxypyranoanthocyanin pigments, resulting from reactions of anthocyanins, respectively with these phenolic acids and with pyruvic acid, a yeast metabolite. Redness of intermediate color wines is associated to anthocyanins and carboxypyranoanthocyanins while yellowness seems related to oxidation.The same approach was applied to monitor color and composition changes during fermentation of six rosé musts made from Grenache, Cinsault and Syrah grapes. Hydroxycinnamic acids were the major phenolic compounds in Grenache and Cinsault musts while the Syrah musts showed higher concentrations of anthocyanins and flavanols, indicating that polyphenol extraction is not only related to maceration conditions but also depends on varietal characteristics. These differences resulted in different proportions of derived pigments as observed on the rosé wine collection [2]. Comparison of the spectrophotometric and MRM data indicated that the majority of phenolic compounds in the Cinsault musts were not among the compounds targeted by MRM. Size exclusion chromatography (SEC) analysis of the musts showed different profiles for the three varieties, Cinsault musts containing large proportions of oligomeric compounds likely derived from hydroxycinnamates. These larger molecular weight compounds were no longer detected after fermentation and were partly recovered from the yeast lees. Comparison of the SEC profiles obtained at different wavelengths also suggest that pigments of Cinsault and Grenache are hydroxycinnamic acid derivatives, likely resulting from enzymatic oxidation. Non targeted metabolomics approaches provided further information on these pigments.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cheynier, Véronique1, Leborgne Cécile2, Ducasse Marie-Agnès3, Meudec Emmanuelle1, Verbaere Arnaud1, Sommerer Nicolas1, Boulet Jean-Claude1, Masson Gilles2 and Mouret Jean-Roch11

SPO, INRAE, Univ Montpellier, Institut Agro, INRAE, PROBE research infrastructure, PFP Polyphenol Analytical Facility
2 SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France; Institut Français de la Vigne et du Vin, Centre du rosé, Vidauban, France
3 Institut Français de la Vigne et du Vin, UMT OENOTYPAGE, Domaine de Pech Rouge, Gruissan, France

Contact the author

Keywords

UHPLC-MS/MS, polyphenols, rosé wines, color, chemometrics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The informative potential of remote and proximal sensing application on vertical- and overhead-trained vineyards in Northeast Italy

The application of remote and proximal sensing in viticulture have been demonstrated as a fast and efficient method to monitor vegetative and physiological parameters of grapevines. The collection of these parameters could be highly valuable to derive information on associated yield and quality traits in the vineyard. However, to leverage the informative potential of the sensing systems, a series of preliminary evaluations should be carried out to standardize working protocols for the specific features of a winegrowing area (e.g., pedoclimate, topography, cultivar, training system). This work aims at evaluating remote and proximal sensing systems for their performance and suitability to provide information on the vegetative, physiological, yield and qualitative aspects of vines and grapes as a function of different training systems in the Valpolicella wine region (Verona, Italy).

Comportement du cépage Mourvèdre dans l’aire d’Appellation d’Origine Contrôlée de Bandol

The Appellation d’Origine Contrôlée of Bandol covers an area of ​​1365 ha, 83% of which are planted with vines, the annual production being around 40,000 hl. Among the wines produced, there are mainly reds which assert themselves over time, but also rosés characterized by their pale colour, generally orange; the whites represent a small part of the production. The main grape variety of this AOC is Mouvèdre, of Spanish origin, which is also found in Provence and Languedoc.

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.

The modification of cultural practices in grapevine cv. Syrah, does it modify the characteristics of the musts?

The work shows the results of a year of experimentation (2020) in a Syrah variety vineyard in La Roda (Castilla-La Mancha, Spain). The trial approach was on a randomized block design with two factors: Irrigation (I) and Pruning (P).
Irrigation schedules were adjusted to apply amounts close to 1,500 m3/ha. With this provision, 2 different irrigation treatments were proposed: I1) Start of irrigation from pea-sized grape to post-harvest (providing at least 20 % of the total amount of irrigation water to be provided post-harvest); I2) Start of irrigation from pea-sized grape to harvest (usual irrigation practice in the study area). Pruning was proposed with two treatments, one at the end of January (P1), which is pruning on a conventional date; and P2) pruning carried out at the beginning of budding. In total, 4 repetitions were designed with 4 elementary plots, each one of them representing one of the proposed treatments (I1P1; I1P2; I2P1; I2P2). In total, 16 plots were worked on and each elementary plot consisted of 30 strains, distributed in 3 lines.
The productive response was evaluated with the yield results of the harvest harvested at 23 ºBrix. The qualitative response was measured in the musts through the indices of technological (acidity, pH and potassium) and phenolic maturity and aromatic compounds in free and glycosylated fractions. The treatments tested had, in general, an effect on the different variables analyzed.

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions.