IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Toasted Vine-Shoots As An Alternative Enological Tool. Impact On The Sensory Profile Of Tempranillo Wines

Toasted Vine-Shoots As An Alternative Enological Tool. Impact On The Sensory Profile Of Tempranillo Wines

Abstract

The use of toasted vine-shoots as an alternative enological tool to make differentiated wines has generated interest among researchers and wineries. However, the evolution of these wines in bottle and the effect on the sensory profile has not been studied so far.

 

In this work, Tempranillo wines were elaborated in contact with their own toasted vine-shoots fragments in two different doses and two moments of addition: in the middle of alcoholic fermentation (1/2AF) and after malolactic fermentation (AMF). After removing vine-shoots, the wines were bottled, and a sensory analysis was carried out over a year using a specific scorecard which included color, olfactory and taste descriptors. Also, along with the traditional odor descriptors, a new one, named SEGs (Shoot from vines – Enological – Granule), was included to describe the specific impact of the vine-shoots. Besides, the phenolic and volatile compositions of wines were analyzed by HPLC-DAD and SBSE-GC-MS, respectively.

 

Results of the statistical analysis showed a greater contribution of the vine-shoots addition moment than doses in the wines sensory differentiation. The sensory analysis at bottling time showed that vine-shoots only modified the color in AMF wines, having more violet tones than the control. However, after 120 days in bottle, the garnet and red tones were upwards, being greater than in the control wine. This suggests a better evolution of wines macerated with lower doses of toasted vine-shoots.

 

Regarding to odor descriptors, wines from treatments showed at the end of winemaking higher values than control wine, except for red fruit notes. At bottling time, the notes of nuts, toast and SEGs were the most important in AMF wines with respect to the control. However, along time in bottle, the differences of these descriptors with respect to the control decreased in AMF wines and slightly increased in 1/2AF ones.

 

Concerning taste descriptors, at bottling time wines from treatments showed higher values than control, mainly in AMF wines, where nuts, toast and SEGs nuances were the most intense. However, there were differences in the bottle evolution between wines from treatments, which slightly enhanced of several descriptors in 1/2AF but decreased in AMF wines, which suggests a better integration of the vine-shoots in the wine in the last case. On the other hand, tannins of wines from vine-shoots treatments were described by tasters as sweetness, non-dryness and non-bitterness since the first tasting, contrary to control ones, where dryness and bitterness were appreciated up to 120 days in bottle.

 

Finally, after a year in the bottle, the differentiation in the sensory profile of the wines was maintained, although the aromatic nuances were softened. 

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cebrián-Tarancón Cristina1, Fernández-Roldán Francisco1, Sánchez-Gómez Rosario1, Alonso Gonzalo L.1 and Salinas M.Rosario1

1Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha,

Contact the author

Keywords

bottle ageing, enological additive, phenolics and volatiles compounds, sensory analysis, vine-shoots

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Pinot noir: an endemic or a flexible variety?

Pinot noir has its historical roots in Burgundy and is generally considered as an endemic vine variety which means that its adaptation is very specific to this environment

Effects of urea and nano-urea foliar treatments on the aromatic profile of Monastrell wines

Foliar application of urea has proven to be an effective method for increasing the amino acid content in grapes, especially when the vineyard has additional nitrogen needs. These treatments can prevent problems of stucking fermentation during winemaking.

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

Yield formation and grape composition: more than meets the eye 

Fruit quality in grapes is not well defined but is often depicted as correlating inversely with crop yield. Both fruit yield and composition, however, are made from distinct components that interact in complex ways. Reproductive growth of grapevines extends over two growing seasons. Inflorescences initiated in buds during the previous year differentiate flowers and set and develop berries during the harvest year.

Sustainable wine industry: supercritical fluid extraction as key technology for biorefinery enhancement

Supercritical carbon dioxide (sc-CO2) extraction is an environmentally friendly technology employed for bioactive compounds recovery from various natural sources and biomasses. The advantages of sc-co2 extraction include its selectivity, relatively mild operating conditions, which minimize the degradation of sensitive compounds, and the absence of potentially harmful organic solvents.