WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Comparison between the volatile chemical profile of two different blends for the enhancement of  “Valpolicella Superiore”

Comparison between the volatile chemical profile of two different blends for the enhancement of  “Valpolicella Superiore”

Abstract

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.

From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

The study aimed to evaluate the volatile chemical and sensory composition of two different blends, one “traditional” (70% Corvina, 30% Rondinella) and an “experimental” (60% Corvinone, 20% Corvina, 20% Rondinella).

The grapes were supplied by six wineries in Valpolicella, four of which provided both blends, whereas two companies provided only traditional modality.

Winemaking was performed under standardized conditions . Free volatile compounds as well as those obtained through hydrolysis of glycosidic precursors were analysed with gas chromatography mass spectrometry (GC-MS) coupled with SPE and SPME extractions.

Fermentation kinetics were found to be influenced by the different composition of the blends.

Differences between different blends were attributable both to varietal as well as fermentative compounds.

Interesting differences were found between the various classes of volatile compounds in relation to the two different blends, confirming how by changing the two different blends we can define two very different styles of wines. Traditional-blends wines have been found to be richer in free terpenes and C6 alcohols, while experimental-blends wines have been found richer in free norisoprenoids (in particular TDN, -ionone and β-damascenone), benzenoids and alcohols. Traditional-blends wines have been also found richer in almost all bound compounds (especially ethyl esters, terpens and benzenoids).

In conclusion, this study highlighted the different  blends’ potential studied to produce wines with specific and different aromatic profiles.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Giacomo Cristanelli, Nicolas Ferraro, Giovanni Luzzini, Davide Slaghenaufi, Maurizio Ugliano

Presenting author

Giacomo,Cristanelli – Dipartimento di Biotecnologie dell’Università di Verona

Dipartimento di Biotecnologie,Università di Verona | Dipartimento di Biotecnologie,Università di Veronai | Dipartimento di Biotecnologie,Università di Verona | Dipartimento di Biotecnologie,Università di Verona

Contact the author

Keywords

Valpolicella Superiore-corvina-Corvinone

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact.

Study of yeast biocatalytic activity on grape aroma compounds

Many volatile compounds of different chemical/biochemical origin contribute to wine aroma. Certain key ‘varietal’ aroma compounds such as methoxypyrazines are formed in the grape and appear to be only scarcely influenced by fermentation.

Data integration via modeling for adaptation to climate change and efficiency breeding in grapevine

Climate can greatly affect grape yield and quality (van Leeuwen et al., 2024). Growing suitable cultivars in a given region and or breed environmental resilient cultivars are essential for maintaining viticulture sustainability, particularly in the face of climate change (Wolkovich et al., 2018).

For a phenomenology of terroir. A consumers’ perspective

This study investigates the notion of terroir by applying a phenomenological approach, focusing on the subjective experience of consumers. We will consider how terroir is described by consumers in order to gauge their subjective viewpoint and understand their way of describing and defining this spatiality.

On sample preparation methods for fermentative beverage VOCs profiling by GCxGC-TOFMS

Study the influence of sample preparation methods on the volatile organic compounds (VOCs) profiling for fermentative beverages by GCxGC-TOFMS analysis. METHODS: Five common sample preparation methods were tested on pooled red wine, white wine, cider, and beer. Studied methods were DHS, Liquid-liquid extraction, mSBSE, SPE and SPME. VOCs were analyzed by GCxGC-TOFMS followed by data analysis with ChromaTOF. RESULTS: The volatile organic compounds (VOCs) profiling results were very dependent on the sample preparation methods.