WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Posters 9 Red wine extract and resveratrol from grapevines could counteract AMD by inhibiting angiogenesis promoted by VEGF pathway in human retinal cells

Red wine extract and resveratrol from grapevines could counteract AMD by inhibiting angiogenesis promoted by VEGF pathway in human retinal cells

Abstract

Age-related macular degeneration (AMD) that is the main cause of visual impairment and blindness in Europe which is characterized by damages in the central part of the retina, the macula. This degenerative disease of the retina is mainly due to the molecular mechanism involving the production and secretion of vascular endothelial growth factor (VEF). Despite therapeutic advances thanks to the use of anti-VEGF, the progression of the disease is often observed without reverse vision quality. New therapies have emerged such as surgical pharmacological and special attention has been paid to prevention, where diet plays a preponderant role. Indeed, antioxidant such as resveratrol, a polyphenol of grapevines, can prevent VEGF secretion induced by stress from retinal cells. Resveratrol can not only reduce oxidative stress but also alter cellular and molecular signaling as well as physiological effects involved in ocular diseases such as AMD. In this context, we investigate the potential effect of red wine extract (RWE) on the secretion and its signaling pathway in human retinal cells ARPE-19. In order to investigate the effect of RWE in ARPE-19, a quantitative and qualitative analysis of the RWE was performed by HPLC MS/MS. We highlight that RWE are able to decreased whether the protein expression and the secretion of VEGF-A from ARPE-19 in a concentration-dependent manner. This alteration of VEGF-A production is associated with a decreased of VEGF-receptor2 (VEGF-R2) protein expression and its phosphorylated intracytoplasmic domain. Afterwards, kinase pathway activation is disturbing and RWE prevents the phosphorylation of MEK and ERK 1/2 in human retinal cells ARPE-19. According to our results, polyphenolic cocktails could present a potential interest in a prevention strategy against AMD.

Acknowledgments:

This work was supported by grants from the ANRT N°°2016/0003, by a French Government grant managed by the French National Research Agency under the program “Investissements d’Avenir”, reference ANR-11-LABX-0021, the Conseil Régional Bourgogne, Franche-Comte (PARI grant) and the FEDER (European Funding for Regional Economic Development), the “Bureau Interprofessionnel des Vins de Bourgogne” (BIVB), and by the Bordeaux Metabolome Facility and MetaboHUB (ANR-11-INBS-0010) project

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Clarisse CORNEBISE, Flavie Courtaut, Marie Taillandier-Coindard, Josep Valls-Fonayet, France, Tristan Richard, David Monchaud, Virginie Aires, Dominique Delmas

Presenting author

Clarisse CORNEBISE – Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France

Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France, Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France, Unité de Recherche Oenologie, EA 4577, USC 1366 INRA-ISVV, F-33882 Villenave d’Ornon, France, Unité de Recherche Oenologie, EA 4577, USC 1366 INRA-ISVV, F-33882 Villenave d’Ornon, France, Université de Bourgogne Franche-Comté, F-21000 Dijon, France; Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC, F-21078 Dijon, France, Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France, Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM; Centre Anticancéreux Georges François Leclerc, F-21000 Dijon, France; Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France

Contact the author

Keywords

Polyphenols, red wine extract, AMD, retinal cells, ARPE-19, degenerative diseases, ocular diseases

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Can the use of rootstocks enhance terroir?

Rootstocks are an essential l management tool for diverse viticultural challenges. However, studies that combine sensory evaluation and compositional analysis of berries and wine, to determine whether the use of a particular rootstock in a terroir can influence wine quality are sparse.

Combining effect of leaf removal and natural shading on grape ripening under two irrigation strategies in Manto negro (Vitis vinifera L.)

The increasingly frequent heat waves during grape ripening pose challenges for high quality wine grape production. Defoliation is a common practice that can improve the control of diseases in bunches, but also it increases the exposure to sunlight. Grapes exposed to solar radiation reach temperatures over the optimum for berry development and maturation. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 using Manto negro wine grapes to study the effect of applied irrigation and different light exposure levels on grape quality. Two irrigation treatments were imposed based on the frequency and amount of water doses in a four-block experimental vineyard at Bodega Ribas (Mallorca). Three light exposure treatments were randomly applied in each irrigation plot. The light treatments included exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening. Leaf area index and canopy porosity was estimated every 2 weeks. Midday leaf water potential was measured weekly. Additionally, apparent electrical conductivity was measured between rows to estimate the soil water content variability. Light and temperature sensors were installed at the bunch level to quantify the differences in bunch temperature and light intensity among treatments. The effect of irrigation and cluster light exposure on berry weight, TSS, TA, malic acid, tartaric acid, K+, and pH were analysed at 5 moments along grape ripening. During different heat waves, the natural shading technique decreased the maximum bunch temperature around 10 °C respect to the exposed bunches in both irrigation strategies. The combination of defoliation and shading techniques after softening decreased TSS at harvest and affected most of the quality parameters during the last stages of ripening, showing an interesting technique to delay ripening in warm viticulture areas.

Understanding the expression of gene families involved in anthocyanin biosynthesis during berry ripening: Tannat as a case study

The quality of wine is assessed, among other things, by its color, which is mainly due to its anthocyanin content. These pigments are polyphenols that give red, purple and blue hues depending on the relative proportion of anthocyanins produced by the action of flavonoid 3’5′ hydroxylase (delphinidin-3-glucoside, petunidin-3-glucoside, malvidin-3-glucoside) or flavonoid 3′ hydroxylase (cyanidin-3-glucoside, peonidin-3-glucoside). To study the genes involved in this biosynthetic pathway, we focused on Vitis vinifera cv. Tannat, known for producing wines with higher anthocyanin content and darker purple color compared to most red grape varieties. In this work, we have performed RNA-Seq analysis of skins during berry development, taking green and red berries at 50% veraison as separate samples, as an experimental strategy to focus on the differential expression of genes of interest.

Lead levels in fortified wines

AIM The main lead exposure route is the intake of contaminated food, water, and alcoholic beverages, in particular wine. At the gastric level, Pb is transformed into a soluble compound which, when conveyed into the bloodstream, is the long-term cause of saturnism, intoxication with neurotoxic, nephrotoxic and hematopoietic effects, and with the neurological developmental delay of children. Pb is classified by the International Agency for Research on Cancer as a 2A class, possible carcinogenic to humans. In an opinion on possible health risks, CONTAM considered that cereals, vegetables, drinking water, and wine give a greater contribute to dietary exposure to Pb in Europe. Large quantities of wine, beer, and other alcoholic products drinking can increase daily Pb intake above the maximum permitted levels.

Elucidating contributions by vineyard site on volatile aroma characteristics of pinot noir wines

Correlations between vineyard site and wine have, historically, been limited due to lack of uniformity in scion and rootstock clone and lack of controlled pilot-scale winemaking conditions, particularly temperature