terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

Abstract

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Grapevine leaves, the most abundant waste product in the wine industry, can be used as a source of bioactive compounds and are present in the diets of several Mediterranean countries. In this work, we have shown the high potential of grapevine leaves for nutrition and as a source of bioactive compounds, which can be used for the pharmaceutical and cosmetic industries. We have selected seven different cultivars with high economic value and performed elemental, fatty acid (FA) and pigment profiling.

Total reflection X-ray fluorescence enabled the identification and quantification of 21 elements. Our results have shown that the ingestion of a small portion of grapevine leaves can provide World Health Organization’s daily recommended doses for several elements. We have also demonstrated that the most abundant FA in grapevine leaves are the health-promoting essential FAs: linoleic acid (omega-3) and linolenic acid (omega-6). Through pigment analysis, seventeen pigments were identified including chlorophylls, lutein, b-carotene and zeaxanthin, known for their antioxidant and anti-inflammatory properties.

Our results demonstrate that grapevine leaves have a high potential for human consumption as well as to be considered as sources of bioactive compounds and a thorough investigation on grapevine cultivars can reveal other applications besides wine.

Acknowledgements:

Work supported by Fundação para a Ciência e a Tecnologia (FCT-Portugal) through the Research Units BioISI (UID/MULTI/04046/2019), MARE (UIDB/04292/2020 and UIDP/04292/2020), ARNET – Aquatic Research Network Associated Laboratory (LA/P/0069/2020)) and PTDC/BIA-BQM/28539/2017 projects. FCT also funded the PhD grant (SFRH/BD/145298/2019) to GL and the research contracts (2022.07433.CEECIND) to MM and (2022.01746.CEECIND) to BD.

References:

1)  Maia M. et al. (2021) More than Just Wine: The Nutritional Benefits of Grapevine Leaves. Foods 10, 2251. DOI 10.3390/foods10102251

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marisa Maia1,2,3*, Ana Rita Cavaco1,2, Gonçalo Laureano1,2, Jorge Cunha4, José Eiras-Dias4, Ana Rita Matos2,3, Bernardo Duarte3,5, Andreia Figueiredo1,2,3

1Grapevine Pathogen Systems Lab., Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
2Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal;
3Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
4Instituto Nacional de Investigação Agrária e Veterinária I.P:, Polo de Inovação de Dois Portos, Quinta da Almoinha 2565-191Dois Portos, Portugal
5MARE – Marine and Environmental Sciences Centre & ARNET – Aquatic Research Network Associated Laboratory, Faculty of Sciences of the University of Lisbon, Campo Grande 1749-016 Lisbon, Portugal

Contact the author*

Keywords

fatty acid content, elemental profile, pigments, nutrition

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].