terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

Abstract

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Grapevine leaves, the most abundant waste product in the wine industry, can be used as a source of bioactive compounds and are present in the diets of several Mediterranean countries. In this work, we have shown the high potential of grapevine leaves for nutrition and as a source of bioactive compounds, which can be used for the pharmaceutical and cosmetic industries. We have selected seven different cultivars with high economic value and performed elemental, fatty acid (FA) and pigment profiling.

Total reflection X-ray fluorescence enabled the identification and quantification of 21 elements. Our results have shown that the ingestion of a small portion of grapevine leaves can provide World Health Organization’s daily recommended doses for several elements. We have also demonstrated that the most abundant FA in grapevine leaves are the health-promoting essential FAs: linoleic acid (omega-3) and linolenic acid (omega-6). Through pigment analysis, seventeen pigments were identified including chlorophylls, lutein, b-carotene and zeaxanthin, known for their antioxidant and anti-inflammatory properties.

Our results demonstrate that grapevine leaves have a high potential for human consumption as well as to be considered as sources of bioactive compounds and a thorough investigation on grapevine cultivars can reveal other applications besides wine.

Acknowledgements:

Work supported by Fundação para a Ciência e a Tecnologia (FCT-Portugal) through the Research Units BioISI (UID/MULTI/04046/2019), MARE (UIDB/04292/2020 and UIDP/04292/2020), ARNET – Aquatic Research Network Associated Laboratory (LA/P/0069/2020)) and PTDC/BIA-BQM/28539/2017 projects. FCT also funded the PhD grant (SFRH/BD/145298/2019) to GL and the research contracts (2022.07433.CEECIND) to MM and (2022.01746.CEECIND) to BD.

References:

1)  Maia M. et al. (2021) More than Just Wine: The Nutritional Benefits of Grapevine Leaves. Foods 10, 2251. DOI 10.3390/foods10102251

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marisa Maia1,2,3*, Ana Rita Cavaco1,2, Gonçalo Laureano1,2, Jorge Cunha4, José Eiras-Dias4, Ana Rita Matos2,3, Bernardo Duarte3,5, Andreia Figueiredo1,2,3

1Grapevine Pathogen Systems Lab., Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
2Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal;
3Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
4Instituto Nacional de Investigação Agrária e Veterinária I.P:, Polo de Inovação de Dois Portos, Quinta da Almoinha 2565-191Dois Portos, Portugal
5MARE – Marine and Environmental Sciences Centre & ARNET – Aquatic Research Network Associated Laboratory, Faculty of Sciences of the University of Lisbon, Campo Grande 1749-016 Lisbon, Portugal

Contact the author*

Keywords

fatty acid content, elemental profile, pigments, nutrition

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.