terclim by ICS banner
IVES 9 IVES Conference Series 9 ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

Abstract

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

This study aimed to characterize, from 2019 to 2021, 6 new fungus disease-tolerant varieties selected by INRAE (Floreal, G5 and 3159B for white grapes and Artaban, 3176N and G14 for red grapes) in comparison to V. vinifera Syrah. A gradient of WD was applied and followed by weekly measures of predawn water
potentials. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading, moment at which all grapes were harvested, as way to objectify the sampling date at a precise physiological landmark. Primary metabolites (glucose, fructose, tartrate, malate and yeast assimilable nitrogen) and main cations (K+, Mg2+, Ca2+, Na+, NH₄+) were assessed by HPLC and enzymatic methods. Secondary metabolites as anthocyanins and thiol precursors were assessed by HPLC-UV and LC-MS/MS, respectively.

Genotype was the main factor explaining the variations in metabolites and cation concentration in berries at the ripe stage. At the phloem unloading arrest, primary metabolites and main cation concentra-tions were the lowest in G14 and the highest in Floreal and Syrah. Regarding secondary metabolites, all genotypes showed higher values than the V. vinifera Syrah. Yet, the red hybrid 3176N emerged as the richest genotype in both anthocyanins and total thiol precursors, reaching values of 1609 mg/L and 539 µg/kg respectively. Despite the low contribution of WD to metabolite concentrations, it consistent-ly reduced the total accumulation of primary and secondary metabolites per berry and per plant, with different intensities depending on the genotype. Our results show that WD can ultimately reduce the production of metabolites per unit of fruit and per plant without significantly improving the concentration of compounds of interest in the grape.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Luciana Wilhelm de Almeida1, 2, Anne Pellegrino2, Aurelie Roland3, Laetitia Mouls3, Hernan Ojeda1 and Laurent Torregrosa1, 2

1. UE Pech Rouge, INRAE, Gruissan, France 
2. UMR LEPSE, Montpellier Uni – CIRAD – INRAE – Institut Agro, Montpellier, France
3. Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author*

Keywords

water deficit, primary metabolism, anthocyanins, thiol precursors

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.