OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Integrated multiblock data analysis for improved understanding of grape maturity and vineyard site contributions to wine composition and sensory domains

Integrated multiblock data analysis for improved understanding of grape maturity and vineyard site contributions to wine composition and sensory domains

Abstract

Much research has sought to define the complex contribution of terroir (varieties x site x cultural practices) on wine composition. This investigation applied recent advances in chemometrics to determine relative contributions of vine growth, berry maturity and site mesoclimate to wine composition and sensory profiles of Shiraz and Cabernet Sauvignon for two vintages. 

Grape maturation was monitored using a berry sugar accumulation model and wines made from sequentially harvested grapes at three stages for each variety and vintage. Comprehensive targeted grape analysis of amino acids, carotenoids, sugars, organic acids, anthocyanins and volatile compounds were combined with targeted wine volatile and non-volatile chemical measures of composition and sensory descriptive analysis. Chemometric models of balanced sample sets derived from the pool samples were used in an ANOVA multiblock framework with orthogonal projection to latent structures (Boccard and Rudaz, 2016) to elucidate the relative importance of model design factors. 

Multiple data matrices derived from the experimental design factors are subtracted from the original data matrix to obtain pure effects and interaction submatrices with structured orthogonal data. A response matrix is derived from the positive eigenvalues associated with SVD of each effect matrix and residuals are then added to each submatrix prior to kernel OPLS. Model performance evaluated from residual structure ratio (RSR), goodness of fit (R2Y) and permutation testing identified the significant factors from each model. Projection of sample scores of significant factors against scores of the residual matrix is used to assess sample clusters with confidence intervals based on Hotelling T2. 

Loadings from significant experimental factors of each model were used for hierarchical cluster analysis (HCA) with Euclidean distance measures and Wards grouping criteria. Prior to HCA scores and loadings are rotated to consistent presentation of factor levels in model plots. A conservative interpretation of loadings heat maps was considered appropriate and a summary heat map for explanatory factors is presented that enable interpretation of the impact of cultivar, site (soil x mesoclimate), grape maturity and region on grape and wine composition. The integrated data driven approach used in this investigation may be of assistance for other investigators for omics based experiments.

Ref: Boccard, J. & Rudaz, S. 2016. Anal Chim Acta. 920:18-28.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Leigh Schmidtke, Guillaume Antalick, Katja Suklje, John Blackman, Alain Deloire

National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588 – Wagga Wagga – New South Wales 2678 – AUSTRALIA
Wine Research Centre, University of Nova Gorica, Vipavska, 5000 Nova Gorica, Slovenia
Agricultrual Institute of Solvenia, Lubljana, 1000, Slovenia
Montpellier SupAgro, Montpellier 34060,

Contact the author

Keywords

AMOPLS, sequential harvest, berry sugar accumulation, targeted metabolomics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Measurement of grape vine growth for model evaluation

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004.

First step in the preparation of a soil map of the Protected Designation of Origin Valdepeñas (Central, Spain)

This work is a first step to make a map of vineyard soils. The characterization of the soils of the Protected Designation of Origin (D.P.O.) Valdepeñas will allow to group the studied profiles according to their physico-chemical characteristics and the concentrations of most relevant chemical elements. 90 soil profiles were analysed throughout the territory and the soils were sampled and described according to FAO (2006) and classified according to and Soil Taxonomy (2014). All samples were air dried, sieved and some physico-chemical parameters were determined following standard protocols. Also, major and trace elements were analysed by X-ray fluorescence. The statistically study was made using the SPSS program. Trend maps were made using the ArcGIS program. The studied soils have the following average properties: pH, 8.3; electrical conductivity, 0,20 dS/m (low); clay, 18.8% (medium) and CaCO3, 17.1% (high). In the study for the major elements. The major elements of these soils are Si, followed by Ca and Al, with an average content of 203.7 g/kg, 105.5 g/kg and 74.0 g/kg respectively. On the other hand, 27 trace elements have been studied. Of all of them, it can be highlighted the average values of Ba (361.8 mg/kg), Sr (129.3 mg/kg), Rb (83.4 mg/kg), V (74.2 mg/kg) and Ce (70.6 mg/kg). Ba, V and Ce values are higher and the values of Sr and Rb are lower to those found in the literature. The discriminant analysis shows a percentage of grouping of 91%. The content of chemical elements together with the physico-chemical characteristics allows grouping the soils in 4 group according to their order in the classification to Soil Taxonomy; due to the importance of the Calcisols in Castilla-La Mancha, it has been decided to establish them as their own group even if they do not appear in Soil Taxonomy classification.

Lean management to improve sustainability in wine sector: an exploratory study in the Prosecco DOC appellation

The contemporary wine sector confronts a formidable array of challenges, including burgeoning production costs and the constricted availability of natural resources. Heightened consumer awareness regarding sustainability issues further compounds these pressures, compelling companies to adopt more judicious resource utilization strategies. In response to these imperatives, there is a growing recognition of the need to overhaul production methodologies within the wine industry with a view to minimizing inputs and eliminating waste.

Implementation of a deep learning-based approach for detecting and localising automatically grapevine leaves with downy mildew symptoms

Grapevine downy mildew is a disease of foliage caused by Oomycete Plasmopara viticola an endoparasite that develops inside grapevine organs and can infect virtually every green organ. Downy mildew is one of the most destructive diseases in wine-growing regions, drastically reducing yield and fruit quality. Traditional manual disease detection relies on farm experts. Human field scouting has been widely used for monitoring the disease progress, however, is costly, laborious, subjective, and often imprecise.

Exploring the dynamic between yeast mannoproteins structure and wine stability

Mannoproteins are macromolecules found on the surface of yeast cells, composed of hyperbranched polysaccharide negatively charged chains by mannosyl-phosphate groups, fixed to a protein core. during the alcoholic fermentation and aging on lees, these mannoproteins are released from the yeast cell wall and become the main yeast-sourced polysaccharide in wine. due to their techno-functional properties, commercial preparations of mannoproteins can be used as additives to better assure tartaric and protein stability.