OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 A new graphical interface as a tool to integrate data from GC-MS and UPLC-MS-QTOF: new compounds related with port wine aging

A new graphical interface as a tool to integrate data from GC-MS and UPLC-MS-QTOF: new compounds related with port wine aging

Abstract

Port wine value is related to its molecular profile resulting from the changes occurring during the ageing period. It is of empirical knowledge that the style is greatly affected by the oxidation regimens, i.e. bottle versus barrel storage. The final quality is rated based on sensory evaluation and the correspondent chemical profile remains largely unknown. This lack of knowledge and understanding significantly limits the ability to improve/drive Port Wine quality and consistency. 

Unravelling the chemical changes, occurring during ageing, that are responsible for the wine flavour, constitutes a critical task when one attempts to address issues related to authenticity and sensory quality. 

It has been demonstrated that some key odorants play a critical role in the perceived oxidized character of wines (1, 2). Nevertheless, the mechanisms for these key odorants formation are not fully understood; only that temperature and mainly oxygen have a synergistic impact on their formation (3). Recently it has been demonstrated that Strecker degradation substrates such as: phenolics, sugars and metals can interact resulting in a unpredictable formation of flavour molecules. 

In order to have an holistic view of the chemical system a pipeline was developed based on UPLS-MS-QTOF and GC-MS data acquisition followed by data fusion. The process is hyphenated with an in-house peak picking interface, coupled with multi- and -univariate statistics to get the most relevant compounds related in this case with Ports stored from 1 to 150 years old. 

In this work the “omics” interface was validated with a set of 37 wines; 42 biomarkers were extracted from GC-MS and 152 from UPLC-MS-QTOF. 

The development of tools such as network reconstruction provided considerable amount of information that contributed to the understanding of the kinetic contexts of the molecules (through ageing time). Clusterization of volatiles and non-volatile compounds brought further new information regarding the interaction between mechanisms and new compounds were identified, such as: SO2-phenolics reactions, phenolics-phenolics , phenolics-aldehydes, amongst other. 

This network-driven approach, integrating data from different equipment’s. has proven to be an useful tool in identifying compounds of interest related to changes occurring during food storage or ageing processes, as well as in better understanding the drivers of quality and authenticity in the final product.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ana Rita Monforte, Sara Martins, António César Silva Ferreira

Wageningen University, The Netherlands. Unilever R&D Vlaardingen, 3130 AC Vlaardingen, The Netherlands
Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina. – Laboratório Associado, Escola Superior de Biotecnologia – Rua Arquiteto Lobão Vital, 172 4200-374 Porto

Contact the author

Keywords

data-fusion, Port, ageing, omics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Cover crops under-vine impact on grapevine performance and vineyard soil microorganisms is highly affected by edaphoclimatic conditions at a regional scale 

Soil management through cover crops can influence the cycle of nutrients, promote water infiltration, decrease erosion, and enhance the soil microbiota biodiversity, improving the grapevine performance. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in semi-arid climates. Use of covers under-vine might be an alternative to these practices aiming at grapevine quality and soil health improvement. The aim of this research was to study the implications of soil management under the vines (cultivation and cover crops) on growth, yield, berry composition and soil microbial communities. A cover crop composed by a mixture of legumes was sown and compared with a control (cultivation), which includes frequent tillage to keep the soil bare, in three areas characterized by different edaphoclimatic conditions in the region of Navarra.

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

Soil management of interrow spacing as an important factor to protect the vineyard soils from runoff and erosion under the Mediterranean climate

Nearly one third of the Herault vineyard (south of France) is planted on soils very sensitive to water runoff and erosion

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

Vinos de tea en la isla de la Palma

En el Norte de la Isla de La Palma (Islas Canarias), se cultivan un conjunto de varietales constituidos principalmente por Negramoll, Listán blanco, Prieto, Albillo y Muñeco.