GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Abstract

It has been known for a long time that altering microclimate affects fruit composition and wine quality. The research project Heat Berry focuses on future scenarios of the climate change regarding higher temperatures and the risk of increasing sun radiation to the fruit. Field experiments were conducted in 2015 and 2016 at an experimental site at Geisenheim (Germany) using Riesling (clone 198-25 grafted to rootstock SO4). The aim of this study was to investigate and separate the effect of higher temperature to the fruit and higher light exposure in the bunch zone. Therefore, an experimental setup was designed to increase temperature inside the bunch zone (up to max. 3 °C on average) as well as defoliation and shading to influence the light exposure of the bunches. In addition, some physiological parameters and maturity measurements (Brix, yeast available nitrogen, organic acids) were determined. Aroma measurements focused on monoterpenes, C13-Norisoprenoids and polyphenols in berries as well as in samples of small scale vinification. A special focus lies on the C13-norisoprenoid TDN (1, 1, 6-trimethyl-1, 2-dihydronaphthalene). It is mostly present in mellow, aging Riesling wines and associated with a petrol taint in the sensory perception. Whether the origin of TDN is connected to viticultural and abiotic factors like temperature or sun exposure will be discussed.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

BRANDT, Melanie (1); SCHEIDWEILER, Mathias (1); RAUHUT, Doris (2); PATZ, Claus-Dieter (3); ZORN, Holger (4); STOLL, Manfred (1)

(1) Hochschule Geisenheim University, Department of General & Organic Viticulture, Blaubachstraße 19, 65366 Geisenheim, Germany,
(2) Hochschule Geisenheim University, Department of Microbiology & Biochemistry, Von-Lade-Str. 1, 65366 Geisenheim, Germany
(3) Hochschule Geisenheim University, Department of Wine Analysis and Beverage Technology, Von-Lade-Str. 1, 65366 Geisenheim, Germany.
(4) Justus Liebig University Giessen, Institute of Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 58, 35392 Giessen, Germany

Contact the author

Keywords

 climate change, light exposure, Vitis vinifera, 1,1,6-trimethyl-1,2-dihydronaphthalene

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Hyperspectral imaging for the appraisal of varietal aroma composition along maturation in intact Vitis vinifera L. Tempranillo Blanco berries

The knowledge of the grape aromatic composition during ripening provides very important information for winegrowers, who may carry out different viticultural practices, or determine the harvest date more accurately. However, there are currently no tools that allow this measurement to be carried out in a non-invasive and rapid way. For this reason, the aim of this work was to design a non-invasive methodology, based on hyperspectral imaging to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening.

Sensory significance of aroma carry-over during bottling from aromatized wine-based beverages into regular wine

In 2020 one out of  eight wine bottles were filled with a flavoured wine-based beverage.

Antioxidant activity of grape seed and skin extract during ripening

Reactive oxygen species (ROS) play an important physiological role in the body’s defense and being involved in numerous signaling pathways 1, 2. When the balance between oxidant and antioxidant species is altered in favor of ROS, oxidative stress is generated. In this condition the cells are damaged as the ROS oxidize important cellular components, such as proteins, lipids, nucleic acids and

Relation entre les caractéristiques des fromages d’Appellation d’Origine Contrôlée et les facteurs de production du lait

Les fromages d’Appellation d’Origine Contrôlée (AOC) représentent un enjeu économique important pour la filière laitière (11 % des fromages produits en France sont des fromages d’AOC, et dans certaines régions de montagne, cette proportion dépasse 50 %). Les spécificités de ces fromages et leurs liaisons avec les caractéristiques du terroir constituent un système complexe où interagissent en particulier la technologie fromagère et les caractéristiques des laits (composition chimique en particulier). Ces dernières dépendent elles-mêmes des caractéristiques des animaux (origine génétique, facteurs physiologiques, état sanitaire) et de leur mode de conduite (alimentation, hygiène, traite…) (fig. 1). L’influence de ces facteurs de production (alimentation et type d’animal en particulier) sur les caractéristiques des fromages est fréquemment mise en avant par les fromagers, sur la base d’observations empiriques. Il existe cependant très peu de travaux expérimentaux sur le sujet, en raison, entre autres, de la difficulté de séparer correctement les effets propres de ces facteurs d’amont de ceux liés à la technologie fromagère.

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.