terclim by ICS banner
IVES 9 IVES Conference Series 9 TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

Abstract

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days. Additionally, samples of seeds and skins from each cultivar were separately macerated in a wine-like solution for 15 days. All treatments were made by triplicate. The contents of anthocyanins and tannins were analysed along macerations spectrophotometrically (tannins reactive to methyl cellulose, total anthocyanin) and using a HPLC-DAD system (pigments, flavan-3-ols). During the first 3 days of winemaking, Arinarnoa and Tannat musts had similar tannin contents that were much higher than those in Marselan musts. But at day 5, Arinarnoa had reached its maximum tannin content while in Tannat and Marselan it continued to increase until day 7. At this point, Marselan had as much tannin contents as Arinarnoa while Tannat had much higher concentrations. Along the post-fermetative macerations, Tannat tannin contents decreased while they continued to increase in Marselan. Thus, from day 13 to 15 of maceration Marselan and Tannat had similar tannin contents that were at devatting significantly higher than in Arinarnoa. The addition of skin tannins did not significantly increase the tannin concentrations of wines. Noteworthy, just in Marselan, the maceration enzymes significantly increased the anthocyanin and particularly the tannins concentrations of musts relative to the other treatments in a magnitude that increased with the maceration time. The macerations in wine-like solutions showed that the extraction of anthocyanins and particularly of skin tannins was very low in Marselan related to the observed in Arinarnoa and Tannat, while the seed tannins were extracted at similar rate in the three cultivars. This research proved that the high proportion of seed tannins in Marselan wines is due to a limited extraction of these compounds from the skins.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sabrina Duarte¹, Valentina Martínez¹, Fernanda Lauz¹, Gustavo González-Neves¹, Diego Piccardo¹

1. Facultad de Agronomía, Universidad de la República, Avda. Garzón 780. C.P., 12900 Montevideo, Uruguay

Contact the author*

Keywords

Marselan, Tannat, Arinarnoa, Tannins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.