GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Abstract

Context and purpose of the study – Fifteen nepoviruses are able to induce fanleaf degeneration in grapes which is economically the most imprtant viral disease. Grapevine fanleaf virus (GFLV) is the main causal agent of this disease worldwide and Arabis mosaic virus (ArMV) is the second most important nepovirus involved in this disease in Europe. A third nepovirus has been described in France. Indeed, Tomato Black Ring Virus (TBRV) was detected in vines for the first time in France on a multi‐varietal plot in 2009. The objective of the study was to quantify the impact of TBRV on two varieties of this plot.

Material and methods – Quantitative and qualitative impact of TBRV assessment was carried out in 2010 and 2011. Over 200 vines were analyzed by ELISA tests in order to determine their virus status. Vines were distributed in four groups: 40 vines of Merlot TBRV positive versus 40 merlot vines virus free and 40 vines of Cabernet franc TBRV positive versus 40 free of the virus. For each vine, the presence of eleven other viruses was investigated. In 2010 and 2011 shoot length was measured. In 2010, grape composition was analyzed to determine technological maturity and phenolic maturity of each vine in relation with its virus status.

Results – Shoot length and total pruning weight is reduced in TBRV infected vines, while lateral number is increased. All yield parameters are affected by the presence of the virus. Vines affected by TBRV produce less bunches and berries and smaller berries compared to healthy vines. Yield loss is greater on Merlot compared to Cabernet franc. Grape quality parameters seem to be less affected by the presence of TBRV. These results provide essential elements for the management of the viral disease in the vineyard.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Coralie DEWASME LAVEAU (1), Séverine MARY (2), Guillaume DARRIEUTORT (2), Laurent AUDEGUIN (3),Maarten VAN HELDEN (4), Cornelis VAN LEEUWEN (1)

(1) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33882 Villenave d’Ornon, France
(2) Univ. Bordeaux, Vitinnov, ISVV, 1 cours du Général de Gaulle, 33170 Gradignan, France
(3) Institut Français de la Vigne et du Vin, Domaine de l’Espiguette, 30240 Le Grau du Roi, France
(4) SARDI Entomology, Urrbrae SA 5064, University of Adelaide, Australia

Contact the author

Keywords

Grapevine, virus, grape quality, yield

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

Building new temperature indexes for a local understanding of grapevine physiology

Aim: Temperature corresponds to one of the main terroir factors influencing grapevine physiology, primarily evidenced by its impact on phenology. Numerous studies have aimed at expressing time with thermal indices such as growing degree days (GDD) and have thus enabled a better modelling of grapevine responses to temperature. However, some works have highlighted the need to adapt

Adaptability of grapevines to climate change: characterization of phenology and sugar accumulation of 50 varieties, under hot climate conditions

Climate is the major factor influencing the dynamics of the vegetative cycle and can determine the timing of phenological periods. Knowledge of the phenology of varieties, their chronological duration, and thermal requirements, allows not only for the better management of interventions in the vineyard, but also to predict the varieties’ behaviour in a scenario of climate change, giving the wine producer the possibility of selecting the grape varieties that are best adapted to the climatic conditions of a certain terroir. In 2014, Symington Family Estates, Vinhos, established two grape variety libraries in two different places with distinctive climate conditions (Douro Superior, and Cima Corgo), with the commitment of contributing to a deeper agronomic and oenological understanding of some grape varieties, in hot climate conditions. In these research vineyards are represented local varieties that are important in the regional and national viticulture, but also others that have over time been forgotten — as well as five international reference cultivars. From 2017 to 2021, phenological observations have been made three times a week, following a defined protocol, to determine the average dates of budbreak, flowering and veraison. With the climate data of each location, the thermal requirements of each variety and the chronological duration of each phase have been calculated. During maturation, berry samples have been gathered weekly to study the dynamics of sugar accumulation, between other parameters. The data was analysed applying phenological and sugar accumulation models available in literature. The results obtained show significant differences between the varieties over several parameters, from the chronological duration and thermal requirements to complete the various stages of development, to the differences between the two locations, confirming the influence of the climate on phenology and the stages of maturation, in these specific conditions.

Island and coastal vineyards in the context of climate change

Aim: The notion of “terroir” enables the attribution of distinctive characteristics to wines from the same region. Climate change raises issues about viticulture, especially the growth of the vines and even more importantly the economic situation of actual wine-growing regions (Schultz and Jones 2010; Quénol 2014). Several studies have addressed the impacts of climate change on viticulture in

Fermentative volatile compounds and chromatic characteristics can contribute to Italian white wines diversity

Perceived aroma plays an important role in wine quality, and it depends mainly on the volatile composition. Volatile organic compounds (VOCs) from grapes and those formed during winemaking are involved in the sensory complexity of wines. In aroma-neutral winegrape varieties, the winemaking process itself, and particularly alcoholic fermentation (AF), impacts strongly on the organoleptic characteristics of wines due to the formation of volatile alcohols, acids, and esters. In addition, phenolic compounds could contribute not only to the wine color but also to VOCs evolution during AF.