GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Abstract

Context and purpose of the study – Fifteen nepoviruses are able to induce fanleaf degeneration in grapes which is economically the most imprtant viral disease. Grapevine fanleaf virus (GFLV) is the main causal agent of this disease worldwide and Arabis mosaic virus (ArMV) is the second most important nepovirus involved in this disease in Europe. A third nepovirus has been described in France. Indeed, Tomato Black Ring Virus (TBRV) was detected in vines for the first time in France on a multi‐varietal plot in 2009. The objective of the study was to quantify the impact of TBRV on two varieties of this plot.

Material and methods – Quantitative and qualitative impact of TBRV assessment was carried out in 2010 and 2011. Over 200 vines were analyzed by ELISA tests in order to determine their virus status. Vines were distributed in four groups: 40 vines of Merlot TBRV positive versus 40 merlot vines virus free and 40 vines of Cabernet franc TBRV positive versus 40 free of the virus. For each vine, the presence of eleven other viruses was investigated. In 2010 and 2011 shoot length was measured. In 2010, grape composition was analyzed to determine technological maturity and phenolic maturity of each vine in relation with its virus status.

Results – Shoot length and total pruning weight is reduced in TBRV infected vines, while lateral number is increased. All yield parameters are affected by the presence of the virus. Vines affected by TBRV produce less bunches and berries and smaller berries compared to healthy vines. Yield loss is greater on Merlot compared to Cabernet franc. Grape quality parameters seem to be less affected by the presence of TBRV. These results provide essential elements for the management of the viral disease in the vineyard.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Coralie DEWASME LAVEAU (1), Séverine MARY (2), Guillaume DARRIEUTORT (2), Laurent AUDEGUIN (3),Maarten VAN HELDEN (4), Cornelis VAN LEEUWEN (1)

(1) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33882 Villenave d’Ornon, France
(2) Univ. Bordeaux, Vitinnov, ISVV, 1 cours du Général de Gaulle, 33170 Gradignan, France
(3) Institut Français de la Vigne et du Vin, Domaine de l’Espiguette, 30240 Le Grau du Roi, France
(4) SARDI Entomology, Urrbrae SA 5064, University of Adelaide, Australia

Contact the author

Keywords

Grapevine, virus, grape quality, yield

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Appliance of climate projections for climate change study in Serbian vineyard regions

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate

Vineyard nutrient budget and sampling protocols

Vineyard nutrient management is crucial for reaching production-specific quality standards, yet timely evaluation of nutrient status remains challenging. The existing sampling protocol of collecting vine tissue (leaves and/or petioles) at bloom or veraison is time-consuming. Additionally, this sampling practice is too late for in-season fertilizer applications (e.g. N is applied well before bloom). Therefore alternative early-season protocols are necessary to predict the vine nutrient demand for the upcoming season. The main goals of this project are to 1) optimize existing tissue sampling protocols; 2) determine the amount of nutrients removed at the end of the growing season.

High and extreme high temperature effects on shiraz berry composition 

Climate change is leading to a rise in average temperature and in the frequency and severity of heatwaves, and is already significantly disturbing grapevine phenology and berry composition. With the evolution of the weather of Australian grape growing regions that are already warm and hot, flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted. These compounds include anthocyanins and tannins which contribute substantially to grape and wine quality. The goals of this project were to determine if berry tannin accumulation is sensitive to high temperature and to enhance knowledge on upper temperature limits for viable wine production, in turn informing critical timing for mitigation strategies.

Moving beyond visible flower counting: RGB image-based flower number and yield prediction in grapevine

Accurate yield estimation is crucial for optimizing vineyard management and logistical organization. Traditional methods relying on manual and destructive flower or berry counts are labor-intensive and unsuitable for large-scale applications.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.