Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Water status modelling: impact of local rainfall variability in Burgundy (France)

Water status modelling: impact of local rainfall variability in Burgundy (France)

Abstract

Water status is a key factor in vine development and berry ripening. Water status is strongly affected by environmental parameters such as soil and climate. Whereas at local scale the soil variability is frequently accounted for, little scientific reports are available concerning the impact of local rainfall variability on grapevine water status. In order to accurately register the space and time variations of rainfall at local scale, a dense rain-gauges network has been installed in Burgundy. It is composed of 45 rain-gauges over a 28 km² area. Rainfall data collected by each rain-gauge in 2014 and 2015 was used as input variables in the grapevine water balance model proposed by Lebon et al (2003). All other climate variables, vineyard and soil parameters were kept strictly identical for each simulation in order to capture the consequences of the sole spatial variability of rainfall on vineyard water status.

As rainfall dynamics impact on the vineyard depends on the soil water content, water balance was modeled considering successively soils with low (50 mm) and medium (150 mm) soil water holding capacities, representative of the soils of the area. The daily fraction of transpirable soil water, averaged on the grape ripening period, was used as an output variable to assess the potential consequences of soil water status on grape characteristics.

During the 2014 (2015) vintage, the mean FTSW from veraison to harvest varied from 0.22 to 0.41 (0.09 to 0.25) for soils with low water capacity with an average difference of 0.04 (0.03). Ranges of 0.31 to 0.76 (0.09 to 0.16) with average differences of 0.09 (0.02) were observed for soils with higher water capacity in 2014 (2015). Therefore, it seems that the spatial variability of rainfall at local scale could significantly affect the vineyard water balance, depending on the vintage and the soil water capacity.
The contribution of local rainfall variability to vineyard water balance in comparison to other factors also impacting the vineyard water status is discussed.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Basile PAUTHIER (1), Luca BRILLANTE (2), Cornelis van LEEUWEN (3), Benjamin BOIS (1)

(1) Centre de Recherches de Climatologie, UMR 6282 CNRS/UB Biogéosciences, Université de Bourgogne-Franche-Comté, 6bd Gabriel 21000 Dijon. France
(2) Council for Agricultural Research and Economics, Viticulture Center, CREA-VIT, Via XXVIII Aprile 26, 31015 Conegliano,TV, Italy
(3) Bordeaux Sciences Agro, ISVV, UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F-33140 Villenave d’Ornon, France

Contact the author

Keywords

Water status, Model, Rainfall, High Resolution, Burgundy

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Une procédure de mise à jour des zones AOC

In France, one of INAO missions is to delimit the production area of the « Appellations d’origine contrôlées » (AOC). For wine AOC, the delimitation of plots allows for identifying plots of land that respond to technical criteria of the vine location, criteria adapted in every appellation. Some old delimitations AOC are not in adequacy with their territory. Indeed, in spite the existence of a politic aiming to protect production areas AOC, urbanization, road infrastructure or quarries occupy surfaces classified in AOC today.

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Postharvest elicitors and metabolic changes in wine grape berries

Wine grape berries respond to postharvest treatments with specific gaseous elicitors in terms of metabolic changes and composition. Short-term (3 days) high (30 KPa) CO2 treatment affects phenol compound concentration in skins of ‘Trebbiano toscano’ berries.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.