Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

Abstract

AIM: In mid to late ripening, sugar and potassium (K+) accumulation into the berry slows and is eventually completed1. K+ is the most abundant cation in the berry, undertaking important physiological roles. During late ripening, Shiraz mesocarp cells die within the central region of the berry. The cessation of K+ import may be a contributing factor to this loss in cell vitality. Many K+ trans-membrane transporters and channels are regulated by the membrane voltage (Vm). We thus measured trans-membrane voltage (Vm) and trans-tissue voltages (Vt) in the mesocarp during Shiraz berry development.

METHODS: Vm measurement Shiraz berries, grown in Coombe vineyard at the University of Adelaide, were sampled weekly from the completion of véraison to the late-ripening stage. To assess Vm, the microelectrode was inserted through the berry skin and into mesocarp. During injection, voltage signals and the corresponding depths of the micropipette tip were recorded. Vt measurement The Vt was measured by a similar method described above without micropipette injection. A small piece of skin was removed, allowing the measurement of Vt from the pedicel to the mesocarp surface. Living berries and dead berries from véraison and late-ripening stage were used. Dead berries were measured after freezing overnight followed by thawing.

RESULTS: Vm The voltages became less negative with increasing tissue depth. This may be attributed to the more severe hypoxia within deeper regions of the berry2. Voltage responses were detected in both living berries and dead berries in the late-ripening stage, with similar profiles. This indicates that other structures or factors contributed to the voltage detected by this method. Vt In living berries, the Vt values were more negative in véraison berries than those in late-ripening berries. This trend was not observed in dead berries. There was no significant difference between the Vt values measured from living berries and dead berries in late-ripening stage.

CONCLUSIONS

The uneven distribution of the Vm between berry compartments may be correlated with oxygen concentration, which could impact on K+ transport within berries. The declined Vm and Vt in the late ripening berries could be associated with the cessation of K+ import into berries.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yin Liu 

National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia,Suzy ROGIERS (New South Wales Department of Primary Industries, Wagga Wagga, NSW 2678, Australia) Leigh SCHMIDTKE (National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia) Stephen TYERMAN (School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia)

Contact the author

Keywords

grape berry ripening, microelectrode, voltage, mesocarp

Citation

Related articles…

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

Effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine

In this video recording of the IVES science meeting 2023, Fernando Zamora (Department of biochemistry and biotechnology, Faculty of oenology, Universitat Rovira i Virgili, Spain) speaks about the effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine. This presentation is based on an original article accessible for free on OENO One.

Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

During wine alcoholic fermentation, yeasts produce volatile aroma compounds from sugar and nitrogen metabolism. Some of the metabolic pathways leading to these compounds have been known for more than a century.

Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Since the renewal of the French vineyard after the Phylloxera crisis, the panorama of cultivated varieties has dramatically changed. This current genetic erosion is due to the increasing interest

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.