Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 The effect of viticultural treatment on grape juice chemical composition

The effect of viticultural treatment on grape juice chemical composition

Abstract

AIM: Viticultural management regimes influence the soil elemental profile of a vineyard, determining the microbial community distribution, insect life, and plant biochemistry and physiology [1]. The interactions among these grapevines, pests and microbes can influence the chemical composition of grapes and, therefore, the metabolites of the wines [2,3]. The wine industry is becoming more aware of the importance that the vineyard ecosystem plays in grape and wine production; in addition, there is a growing desire to use fewer synthetic chemicals to promote natural and diverse vineyard ecosystems. This study investigates the effect of two different viticultural management approaches on grape juice composition. Key metabolites in juice samples originating from grapes subjected to different viticultural treatments (Contemporary – use of synthetic herbicides and Future – no use of synthetic herbicides) were measured prior to alcoholic fermentation.

METHODS: Key metabolites, including amino acids, C6 compounds, and thiol precursors, were quantified in this study using a combination of GC-MS and LC-MS/MS [4]. SPE was used to extract volatile C6-compounds from the juices before analysis [5,6]. Basic oenological parameters of the juice samples were also determined. Data analysis was carried out using the software R and MetaboAnalyst.

RESULTS: Twenty-wight important metabolites in New Zealand Sauvignon blanc, Pinot noir and Merlot juice samples were detected and measured. From the results, PERMANOVA factors (Variety, Vintage, Region and Treatment) were found to be significant (p-value < 0.05). Although the factor Treatment was less than the role of the intrinsic factors Variety and Vintage, it is essential to highlight that approximately 4.1% of the variation found within the data set can be attributed to the implementation of the viticultural management regimes.

CONCLUSIONS

In this study, the chemical profile of New Zealand grape juice from grapes grown under different vineyard management regimes was explored. The results confirmed that the difference in metabolite profiles between vineyard management regimes was small but detectable. This information is noteworthy and valuable for grape growers because of increasing concerns regarding the use of synthetic chemicals in agriculture and the shift towards improved sustainable horticultural practices.

ACKNOWLEDGEMENTS

The authors wish to thank the Bragato Research Institute, New Zealand Winegrowers, and the Ministry of Business, Industry, and Employment (MBIE), for funding this work.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jin Wang

University of Auckland, New Zealand,Bruno FEDRIZZI, University of Auckland Rebecca E. JELLEY, University of Auckland Farhana PINU, New Zealand Institute for Plant and Food Research Limited Emma SHERMAN, New Zealand Institute for Plant and Food Research Limited Damian MARTIN, New Zealand Institute for Plant and Food Research Limited Claire GROSE, New Zealand Institute for Plant and Food Research Limited

Contact the author

Keywords

grape juice, viticultural treatments, amino acids, c6 compounds, thiol precursors

Citation

Related articles…

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Sviluppo di una metodologia di tracciabilità e definizione dell’impronta petrochimica in suoli e vini della Sicilia occidentale nella piana di Marsala (TP)

I risultati delle ricerche condotte in un vigneto sperimentale di Marsala (TP), scelto per omogeneità di fattori bio-agronomici (età, tecniche colturali, potenzialità vegetativa e produttiva)

Genomic comparison on O. oeni: can l. hilgardii be a novel starter culture in malolactic fermentation?

Malolactic fermentation (MLF) the microbial bioconversion of L-malic acid into L-lactic acid, is a pivotal metabolic process that holds fundamental significance for the quality and organoleptic characteristics of some wines. Oenococcus oeni is considered to be the main player in this conversion, and it is globally used as a starter culture for mlf thanks to his capacity to tolerate the harsh wine environment.

Application of ultrasonic and refractometric measurements in enological samples and related model solutions

AIM: The refractive index is a basic optical property of materials and a key tool for the determination of major components in musts, such as sugars

OmicBots – An innovative and intelligent multi-omics platform facing wine sector challenges

To face emerging competition and challenges, wine producers globally rely on precision viticulture (PV) solutions to boost productivity, enhance quality, increase profitability, and reduce the environmental impact of vineyards. Current pv methods predominantly use multispectral sensor data from several platforms (satellites or vineyard installations). However, these applications generally use data analysis strategies lacking physiological grapevine support.