Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Effect of late pruning on yield and wine composition in monastrell wines

Effect of late pruning on yield and wine composition in monastrell wines

Abstract

Global warming is shifting vine phenology, resulting in a decoupling of phenolic and technological berry ripening. This is altering the balance of fruit traits, which is key relevance to winegrowers, particularly in arid and semi-arid areas. Our aim was to test late pruning as an useful tool to delay grape ripening and to assess the effects of this technique on the yield and wine composition, looking mainly to reduce the wine alcoholic content without reducing phenolic composition of the wines. A trial was established in a commercial vineyard comparing, in 2020 season, two vine training system (double cordon and goblet), two moments of pruning:

(i) winter (Control) and

(ii) before the basal bud burst (BBCH 07)(late-pruning, LP) and two harvest dates (12°and 14°Baumé).

In 2019, only goblet and harvest at 14°Baumé was tested. In 2019, and although there was a sharp decrease in yield, the composition of wine improve significantly (total acidity, colour intensity, anthocyanin and tannin), therefore we conducted the experiment in 2020 and this year late pruning were tested in two training system (goblet and double cordon) and two moments of harvest (12°and 14°Baume). When grapes were harvested at 12°Baumé, yield was not affected in both training system and late pruning slightly reduced alcohol content and increase total acidity, colour intensity, anthocyanin and tannin in the wines from both vineyards. When harvest was done when grapes reached 14° Baumé, late pruning significantly reduced yield, there was no effect on alcohol content and total acidity but LP increased colour intensity and anthocyanins in the wines of both vineyards. The effect of late pruning on harvest date were negligible for both training system (goblet and double cordon). However, if we compared the chromatic composition of LPT 12º wines with control wines made with 14ºBaume grapes, we could observed that they were similar but alcohol was 20% lower in LP 12º wines. Therefore, late pruning could be an useful tool to improve phenolic composition of wines, allowing a reduction of their alcohol content. It is clear that delayed pruning is a simple and cost-effective technique that may allow the semi-arid regions winegrowers to adapt to global warming, harvesting the grapes with lower sugar content without harming the quality of the wines.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alejandro Martínez Moreno

University of Murcia,Pilar Martínez Pérez (University of Murcia) Ana Belén Bautista Ortín (University of Murcia) Encarna Gómez Plaza (University of Murcia)

Contact the author

Keywords

global warming, phenology, govelet, Vitis vinifera

Citation

Related articles…

Using 1H-NMR combined with chemometrics to discriminate the effect of different cuts and toasting of woods used for grape pomace distillate ageing

The purpose of this research study is to consider new solutions for distillate ageing, in alternative to conventional oak chips or barrels in particular sliced wood and peeled wood were compared to oak cubes, normally employed during both wine and distillate ageing.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

Can different green manure fertilizations affect the vine balance and grape quality? First evidence of multi-year study

In the context of sustainable viticulture that implements organic practices to maintain soil fertility, green manuring plays a crucial role due to its ability to stock carbon and nitrogen in soil while supporting biodiversity.

Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1]. Despite the mechanisms involved in wine oxidation have been extensively reviewed [2], the protection of wine against oxidative spoilage remains one of the main goals of winemaking.
SO2 is one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines.

An effective approach to mitigating ochratoxin A (OTA) levels in wine with minor impact on wine quality

OTA occurrence in wine is well-documented, with higher levels typically found in red (< 0.01-7.63 μg/l), followed by rose (0.01-2.40 μg/l) and white wine (<0.01-1.72 μg/l). Incidence rates are nOTAble, with studies showing OTA present in 53% of 521 red wines, 69% of 98 rose, and 61% of 301 white wines analysed. In europe, wine is estimated to be the second source of OTA intake after cereals. Since 2006, the maximum allowable limit for OTA in wine is 2 μg/l, according to regulation (ec) no. 1881/2006.