Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Abstract

Grapevine vegetative multiplication allows the accumulation of spontaneous mutations and increase intra-cultivar genetic diversity that can be exploited to maintain grape wine quality, tipicity and adaptation to different climate conditions. Non-volatile phenolic compounds are intrinsic components of grape fruits and derived products, particularly wine. They constitute a heterogeneous family of compounds and play an important role on the sensorial attributes of wine because they are responsible for some of important organoleptic properties as colour, flavour, bitterness and astringency. In the present study, we used a targeted metabolomics approach based on ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-QqQ-MS/MS) to study the anthocyanin and non-coloured phenol profiles of a singular Tempranillo clone (Tempranillo negro or VN21), characterized by a dark-blue color in grape berry skin, as compared to RJ43, one of the most cultivated clones in D.O.Ca. Rioja (Spain). In addition, we investigated differences between VN21 and RJ43 clones, in the phenolic transference from grape to wine at different phases of the winemaking process. The results showed that anthocyanin and non-colored phenol content was higher in VN21 grape skin and seeds than in RJ43. With respect to anthocyanins, the singular color of grape skin in VN21 could be explained by higher concentrations of peonidin and cyanidin derivatives. Regarding non-colored phenols, the main differences were observed for proanthocyanidins and stilbenes concentration in grape skin and more importantly in seeds. Those content differences observed in berries were enhanced in the VN21 wines, displaying significantly higher concentrations of anthocyanins, as well as significantly increased contents of mainly proanthocyanidins and stilbenes. The results manifest the importance of intra-cultivar genetic diversity to obtain red wines with a high phenolic content, responsible of key quality aspects of the wine such as organoleptic properties, stability, complexity and health benefits. Moreover, this study exemplifies how spontaneous somatic variation can be used through grapevine clonal selection combining metabolomic analyses.

FUNDING SOURCES

This work was partially supported by project BIO2017-86375-R from the Spanish Ministry of Economy and Competitiveness (co-funded by the European Social Fund, European Union); YF was supported by a grant from Government of La Rioja; M.J. Motilva thanks to CSIC for partial funding through the “Ayudas incorporación a escalas científicas CSIC, 2018” (Reference 201870I129).

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yolanda Ferradás 

Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20 – salida 13). 26007 Logroño (La Rioja), Spain,Carolina ROYO, José Miguel MARTÍNEZ-ZAPATER and María José MOTILVA  Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20 – salida 13). 26007 Logroño (La Rioja), Spain

Contact the author

Keywords

anthocyanins, berry phenolic composition, wine phenolic composition, somatic variation, grapevine, phenolic compounds, stilbenes, tempranillo

Citation

Related articles…

Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Among the numerous nutrients vines extract from the soil, nitrogen is the one that interferes most with vine vigor, yield, berry constitution and wine quality. Many studies relate on the influence of various levels of nitrogen

Uncovering the influence of vineyard management on fungal community structure and functional diversity within above-ground compartments

In viticulture, microbial communities – particularly fungi – play a vital role in plant health, disease management, and grape quality.

Formation And Evolution Of Minty Terpenoids During Model Ageing Of Cabernet Franc And Merlot Wines

In recent years, a pool of terpenoids possibly implicated in minty odours and in the appreciable refreshing sensation, has been identified in long aged red Bordeaux wines (Lisanti et al., 2021, Picard et al., 2016; Picard et al., 2017). These compounds were found to play a key role in the so-called “ageing bouquet”, that can be defined as “the homogeneous, harmonious flavour resulting from the complex transformation process in wine during bottle storage” (Picard et al., 2015). Moreover the minty-fresh sensory dimension in fine aged red wines plays an important role in typicity judgement by wine professionals (Picard et al., 2015).

Effect of elicitors and ripening moment on the phenolic composition of Monastrell

Grapevine (Vitis vinifera L.) is a globally cultivated crop and economically significant, particularly in the wine industry (Varela et al., 2024). Climate change is already affecting vineyards and is expected to worsen (Averbeck et al., 2019; Dupuis and Knoepfel, 2011).

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.