Macrowine 2021
IVES 9 IVES Conference Series 9 Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

Abstract

The use of non-Saccharomyces yeast species for the improvement of wine technological and oenological properties is a topic that has gained much interest in recent years [1]. Their application as co-starter cultures sequential to the inoculation of Saccharomyces cerevisiae and in aging on the lees has been shown to improve aspects such as protein stability and mouthfeel [2]. These contributions have frequently been associated with higher levels of polysaccharides, specifically the cell wall-derived mannoprotein [3]. Furthermore, mannoprotein structure and composition has been shown to vary between yeast strains, which in turn may influence their behaviour in the wine matrix [4-6]. However, non-Saccharomyces yeasts are typically weak fermentors and are frequently out-competed in the fermentation medium. An alternative strategy to their use as co-starter cultures is the isolation of the compound of interest for exogenous application to wine [7]. Indeed, the addition of exogenous mannoprotein-containing products derived from the cell wall of the wine yeast S. cerevisiae is a fairly common winemaking practice [8]. Nevertheless, the extraction of mannoproteins from non-Saccharomyces yeasts has not yet been well described. AIM: This study aimed to optimise the extraction of mannoproteins from four non-Saccharomyces strains, and to perform a preliminary investigation into the compositional differences of the mannoproteins obtained from the different species.

METHODS: Four non-Saccharomyces wine strains, Saccharomyces cerevisiaeSaccharomyces boulardiiMetschnikowia fructicola and Torulaspora delbrueckii, were exposed to combined methods with varied parameters of ultrasound and enzymatic extraction with β-glucanase to optimise mannoprotein yield. Colorimetric assays were used to quantify protein and carbohydrate concentrations in the extracts.

RESULTS: Yeast cells subjected to 4 min of ultrasound treatment applied at 80% of the maximum amplitude with a 50% duty cycle, followed by an enzymatic treatment of 4000 U lyticase per g dry cells weight, showed the highest yield of mannoproteins from all species. Furthermore, preliminary evaluation of the obtained extracts revealed differences in carbohydrate/protein ratios between species and with increased enzyme incubation time, as demonstrated by the higher ratios obtained for T. Delbrueckii and S. cerevisiae after almost all treatments, in comparison to M. fructicola and S. boulardii.

CONCLUSIONS: The results obtained in this study form an important step towards further characterisation of extraction treatment impact and yeast species effect on the extracted mannoproteins. Their impact on the carbohydrate/protein ratio in particular is an important factor to consider for applications such as wine protein haze reduction and tartrate stabilisation, and requires more in-depth investigation of isolated mannoproteins.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Carla Snyman, Benoit DIVOL, Matteo MARANGON, Julie MEKOUE NGUELA, Nathalie SCIECZKOWSKI

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa, Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell’Università, 16, 35020, Legnaro, Padova, Italy, Lallemand SAS, 19 rue des briquetiers, BP 59, 31702 Blagnac, France, Lallemand SAS, 19 rue des briquetiers, BP 59, 31702 Blagnac, France

Contact the author

Keywords

mannoprotein; yeast; non-saccharomyces; extraction; wine; ultrasound; β-glucanase

Citation

Related articles…

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

Sustainable yield management through fruitfulness and bunch architecture manipulation

Vineyards are highly variable and this variation is largely driven by environmental conditions and seasonal variation. For example, warm temperatures

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions.

Valorization of grape marc in a biorefinery loop for producing short- and medium-chain fatty acids, hydrogen, and methane, with polyphenol recovery

Global grape production amounts to approximately 70 million tons per year, with Europe contributing 61% of the world’s wine output, primarily from Italy, France, and Spain.

Macrowine 2021
IVES 9 IVES Conference Series 9 Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: September 3, 2021

Issue: (ex: Issue: Terclim 2023)

Type: typeofpublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

Citation

Related articles…

Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

The Precision Viticulture (PV) is defined “as a management system that is information and technology based, is site specific and uses one or more of the following sources of data: soils, vigour, nutrients, pests, moisture, and yield among others, for optimum profitability, sustainability, and protection of the environment” (OIV, 2018, in process). The elements mentioned in the definition are an important part of the terroir components. The terroir is a tool In Viticulture, it is the analysis and study unit, and the variability of a certain situation can be due to any difference in every element or property of each factor that constitutes it, including the management.The soil and its management are those that bring the most variability to terroir.

Climate influence on the grapevine phenology and anthocyanins content in wines from the Skopje vineyard area, Republic of Macedonia

The phenological stages and the content of the anthocyanins of non-irrigated cultivars Blatina, Vranec, Kratoshija, Prokupec and Stanushina were study

The ability of wine yeasts fermenting by the addition of exogenous biotin

Research is focused on the increase of the field of obtaining the wine yeast, under physical and chemical conditions. Study of different influences on yeast production is very important for the promotion

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.