Macrowine 2021
IVES 9 IVES Conference Series 9 Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

Abstract

The use of non-Saccharomyces yeast species for the improvement of wine technological and oenological properties is a topic that has gained much interest in recent years [1]. Their application as co-starter cultures sequential to the inoculation of Saccharomyces cerevisiae and in aging on the lees has been shown to improve aspects such as protein stability and mouthfeel [2]. These contributions have frequently been associated with higher levels of polysaccharides, specifically the cell wall-derived mannoprotein [3]. Furthermore, mannoprotein structure and composition has been shown to vary between yeast strains, which in turn may influence their behaviour in the wine matrix [4-6]. However, non-Saccharomyces yeasts are typically weak fermentors and are frequently out-competed in the fermentation medium. An alternative strategy to their use as co-starter cultures is the isolation of the compound of interest for exogenous application to wine [7]. Indeed, the addition of exogenous mannoprotein-containing products derived from the cell wall of the wine yeast S. cerevisiae is a fairly common winemaking practice [8]. Nevertheless, the extraction of mannoproteins from non-Saccharomyces yeasts has not yet been well described. AIM: This study aimed to optimise the extraction of mannoproteins from four non-Saccharomyces strains, and to perform a preliminary investigation into the compositional differences of the mannoproteins obtained from the different species.

METHODS: Four non-Saccharomyces wine strains, Saccharomyces cerevisiaeSaccharomyces boulardiiMetschnikowia fructicola and Torulaspora delbrueckii, were exposed to combined methods with varied parameters of ultrasound and enzymatic extraction with β-glucanase to optimise mannoprotein yield. Colorimetric assays were used to quantify protein and carbohydrate concentrations in the extracts.

RESULTS: Yeast cells subjected to 4 min of ultrasound treatment applied at 80% of the maximum amplitude with a 50% duty cycle, followed by an enzymatic treatment of 4000 U lyticase per g dry cells weight, showed the highest yield of mannoproteins from all species. Furthermore, preliminary evaluation of the obtained extracts revealed differences in carbohydrate/protein ratios between species and with increased enzyme incubation time, as demonstrated by the higher ratios obtained for T. Delbrueckii and S. cerevisiae after almost all treatments, in comparison to M. fructicola and S. boulardii.

CONCLUSIONS: The results obtained in this study form an important step towards further characterisation of extraction treatment impact and yeast species effect on the extracted mannoproteins. Their impact on the carbohydrate/protein ratio in particular is an important factor to consider for applications such as wine protein haze reduction and tartrate stabilisation, and requires more in-depth investigation of isolated mannoproteins.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Carla Snyman, Benoit DIVOL, Matteo MARANGON, Julie MEKOUE NGUELA, Nathalie SCIECZKOWSKI

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa, Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell’Università, 16, 35020, Legnaro, Padova, Italy, Lallemand SAS, 19 rue des briquetiers, BP 59, 31702 Blagnac, France, Lallemand SAS, 19 rue des briquetiers, BP 59, 31702 Blagnac, France

Contact the author

Keywords

mannoprotein; yeast; non-saccharomyces; extraction; wine; ultrasound; β-glucanase

Citation

Related articles…

Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

AIM: In the last years, many wineries are increasing experimentation to produce more distinguishable beverages. In this sense, the reduction of the fermentation temperature could be a useful tool because it preserves volatile compounds and prevents wines from browning, particularly in the case of white wines.

Le zonage viticole: instrument pour la récuperation d’un ancien cépage des collines de Conegliano (Verdiso – V. vinifera)

Dans le contexte viticole actuel, la prise de conscience que chaque cépage ne trouve son expression qualitative maximale que dans certains terroirs bien définis

Monitoring of grapevine stem potentials with an embedded microtensiometer

Vine water status is a crucial determinant of vine growth, productivity, fruit composition and terroir or wine style; therefore, regulating water stress is of great importance. Since vine water status depends on both soil moisture and aerial environment and is very temporally dynamic, direct measurement of vine water potential is highly preferable. Current methods only provide limited data. To regulate vine water status it is critical to monitor vine water status to be able to: (1) measure vine water status to predict the effect of water stress on the overall vineyard performance and fruit quality and optimize harvest management and wine-making (2) properly regulate the water status to impose for a desired fruit quality or style (3) determine if water management has reached the desired stress level.

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.

Caratterizzazione delle produzioni vitivinicole dell’area del Barolo: Un’esperienza pluridisciplinare triennale (4)

Il Nebbiolo, uno dei vitigni più rappresentativi della viticoltura piemontese. é caratterizzato da una maturazione tardiva, una elevata vigoria e una bassa fertilità basale. La sua popolazione inoltre presenta una tale variabilità morfologica che é consuetudine suddividere il vitigno in diverse sottovarietà (Lampia, Rosé, Michet, Balla per citare solo quelle dell’areale albese) ognuna con presunte distinte caratteristiche morfologiche e produttive.

Macrowine 2021
IVES 9 IVES Conference Series 9 Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: September 3, 2021

Issue: (ex: Issue: Terclim 2023)

Type: typeofpublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

Citation

Related articles…

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Cell pluripotency, enables the possibility to change the cellular fate, stimulating the reorganization and the formation of new vegetative structures from differentiated somatic tissues. Although several factors are implicated in determining the success of a breeding program through the use of modern biotechnological techniques, the definition of a specific regeneration strategy is fundamental to speed up and make these applications feasible.

Qualité des vins et Terroirs. Incidence du milieu naturel sur la composition aromatique des vins

The northern vineyards produce wines with a high aromatic richness. The wines of Alsace are appreciated for the diversity of their aromas, the typicality of which was for a long time judged mainly according to the grape variety of origin. Alsatian winegrowers have however widely sensed the importance of the environment of the vine on the quality of the wines. Efforts are made to try to harmonize in a reasoned way the interaction between the natural environment and the plant material with a view to developing the character of the grape variety through the fine expression of the terroir and making the quality and typicality even more inimitable. wines produced in Alsace.

Characterization of vineyard sites for quality wine production. German experiences

The quality of grapevines measured by yield and must density in the northern part of Europe conditons can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another. One hundred year observations in Johannisberg from 1890 to 1991 demonstrate for the yield formation a clear dependancy from the year combined with a steady increase in productivity; latter a proof of positive clonal selection efforts.

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.