Electrochemical diversity of italian white wines

Abstract

Analysis of phenolic compounds typically involve spectrophotometric methods as well as liquid chromatography combined with DAD, fluorimetric, or MS detection. However, the complexity of wine phenolic composition generated, in recent years, attention towards other analytical approaches, including those allowing rapid and inexpensive operations. Voltametric AIM Oxidation of white wine phenolics occurs at different stages during winemaking and storage and can have important implications for wine sensory quality. Phenolic compounds, in particular those with a ortho-diphenol moiety, are main target of oxidation in wine. Strategies for the methods are particularly suited for the analysis of oxidizable compounds such as phenolics. The redox-active species can be oxidized and reduced at the electrode, therefore, applications of electrochemistry have been developed both to quantify such species, and to probe wine maturation processes.3 The project on the diversity of Italian wines aims at collecting and analysing large-scale compositional dataset related to Italian white wines.

METHODS: The electrochemical properties of wine phenolics, and relative reducing strengths, have been examined using Cyclic Voltammetry (CV). Methods based upon disposable electrodes have been used, including carbon paste electrodes with undiluted wines.4 Cyclic voltammograms of more than 50 Italian white wines belonging to different appellations were collected and their features were analysed in conjunction with other parameters such as total phenolics, free and total SO2, acetaldehyde, and ascorbic acid. The wines were collected in the framework of the activities of the D-Wines (Diversity of Italian wines) project.

RESULTS: The results obtained indicated a great diversity of voltametric responses, although the ability to identify electrochemical features that were typical of wine types was rather limited with raw data. To obtain a higher number of discriminant features, derivative voltammograms were built and studied by multivariate statistical analysis. The region of the voltammograms comprised between 0-700 mV was found to contain several highly discriminating features across the entire dataset. Some of key features were identified and wines were classified accordingly.

CONCLUSIONS:

It is expected that these results will help developing rapid novel tools for phenolics analysis in the wine industry, where results from chemistry methods, or chromatographic procedures, take some time to obtain. Further research using electrochemical tools to probe ageing processes also has considerable prospects for shedding light on how to enhance quality characteristics in wine.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diletta, Invincibile 

University of Verona,Davide, SLAGHENAUFI, University of Verona Giovanni, Luzzini, University of Verona Marangon, Matteo, University of Padua Mattivi, Fulvio, University of Trento Moio, Luigi, University of Naples ‘Federico II’ Versari, Andrea, University of Bologna Rio Segade, Susana, University of Turin Maurizio, UGLIANO, University of Verona

Contact the author

Keywords

white wine, carbon paste electrodes, phenolic compounds, cyclic voltammetry

Citation

Related articles…

Why aren’t farmers using precision viticulture frequently? A case study

n the last years, viticulture precision tools have been made available for farmers for different crops. The feeling that these tools are mandatory on an agriculture of the future have been disseminated by commercial entities but also from policy makers.

A survey on the rotundone content of 18 grape varieties sourced from a germplasm 

Rotundone, the pepper aroma compound, has been detected in wines made from a large number of grape varieties. However, given the fact that analyzed wines were sourced from different winegrowing regions and seasons, made using different winemaking techniques and at different scales, it remains difficult to assess the real variety potential to produce rotundone.

Effect of interspecific yeast hybrids for secondary in-bottle alcoholic fermentation of english sparkling wines

In sparkling winemaking several yeasts can be used to perform the primary alcoholic fermentation that leads to the elaboration of the base wine. However, only a few Saccharomyces cerevisiae yeast strains are regularly used for the secondary in-bottle alcoholic fermentation 1. Recently, advances in yeast development programs have resulted in new breeds of interspecific wine yeast hybrids that ferment efficiently while producing novel flavours and aromas 2. In this work, sparkling wines produced using interspecific yeast hybrids for the secondary in-bottle alcoholic fermentation have been chemically and sensorially characterized.METHODS: Three commercial English base wines have been prepared for secondary in-bottle alcoholic fermentation with different yeast strains, including two commercial and several novel interspecific hybrids derived from Saccharomyces species not traditionally used in sparkling winemaking. After 12 months of lees ageing, the 14 wines produced were analysed for their chemical and macromolecular composition 3,4, phenolic profile 5, foaming and viscosity properties [6]. The analytical data were supplemented with a sensory analysis.

Banques de données biologiques annuelles par terroir et optimisation des itinéraires culturaux

In addition to studies on the edaphic and landscape characteristics of the environment (Dolédec, 1995), the characterization of the physiology of the vine and of parasitism during its vegetative cycle represents an essential component of knowledge and management of the terroirs.

Global geo changes, including climate: viticulture result on new viticulture-viticolture in a territory both further north of the region and at high altitude

Context and purpose of the study. In relation to global geo changes, including climatic ones, the following research has been conducted: 1. In Europe’s highest vineyard (1395 m.a.s.l.) (Cargnello, 2014÷2021; Cargnello & Col. 2019÷2021)