Electrochemical diversity of italian white wines

Abstract

Analysis of phenolic compounds typically involve spectrophotometric methods as well as liquid chromatography combined with DAD, fluorimetric, or MS detection. However, the complexity of wine phenolic composition generated, in recent years, attention towards other analytical approaches, including those allowing rapid and inexpensive operations. Voltametric AIM Oxidation of white wine phenolics occurs at different stages during winemaking and storage and can have important implications for wine sensory quality. Phenolic compounds, in particular those with a ortho-diphenol moiety, are main target of oxidation in wine. Strategies for the methods are particularly suited for the analysis of oxidizable compounds such as phenolics. The redox-active species can be oxidized and reduced at the electrode, therefore, applications of electrochemistry have been developed both to quantify such species, and to probe wine maturation processes.3 The project on the diversity of Italian wines aims at collecting and analysing large-scale compositional dataset related to Italian white wines.

METHODS: The electrochemical properties of wine phenolics, and relative reducing strengths, have been examined using Cyclic Voltammetry (CV). Methods based upon disposable electrodes have been used, including carbon paste electrodes with undiluted wines.4 Cyclic voltammograms of more than 50 Italian white wines belonging to different appellations were collected and their features were analysed in conjunction with other parameters such as total phenolics, free and total SO2, acetaldehyde, and ascorbic acid. The wines were collected in the framework of the activities of the D-Wines (Diversity of Italian wines) project.

RESULTS: The results obtained indicated a great diversity of voltametric responses, although the ability to identify electrochemical features that were typical of wine types was rather limited with raw data. To obtain a higher number of discriminant features, derivative voltammograms were built and studied by multivariate statistical analysis. The region of the voltammograms comprised between 0-700 mV was found to contain several highly discriminating features across the entire dataset. Some of key features were identified and wines were classified accordingly.

CONCLUSIONS:

It is expected that these results will help developing rapid novel tools for phenolics analysis in the wine industry, where results from chemistry methods, or chromatographic procedures, take some time to obtain. Further research using electrochemical tools to probe ageing processes also has considerable prospects for shedding light on how to enhance quality characteristics in wine.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diletta, Invincibile 

University of Verona,Davide, SLAGHENAUFI, University of Verona Giovanni, Luzzini, University of Verona Marangon, Matteo, University of Padua Mattivi, Fulvio, University of Trento Moio, Luigi, University of Naples ‘Federico II’ Versari, Andrea, University of Bologna Rio Segade, Susana, University of Turin Maurizio, UGLIANO, University of Verona

Contact the author

Keywords

white wine, carbon paste electrodes, phenolic compounds, cyclic voltammetry

Citation

Related articles…

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]

Use of cyclodextrins to improve grape must fermentability thanks to their sequestering effect on medium-chain fatty acids

Cyclodextrins are complex cyclic oligosaccharides of glucose units. They are produced from the breakdown of starch by the enzymatic reaction of glucosyltransferase. The result is a ring-shaped molecule with a cavity with a hydrophilic outer part and a hydrophobic inner part. As a consequence of this cavity, cyclodextrin is able to form complexes with non-polar organic molecules [1,2].

Reduced berry skin epi-cuticular wax and cutin accumulation associates with a genomic deletion and increased polyphenols extractability in a clone of Tempranillo Tinto 

Tempranillo Tinto (TT) is the third-most planted red wine variety in the world, and it is mostly grown in the Iberian Peninsula. Spontaneous somatic variation appearing during vegetative propagation can be exploited to improve elite varieties as Tempranillo Tinto, including the selection of new phenotypes enhancing berry quality. We described previously that a somatic variant of TT with darker fruit color, the clone VN21, exhibits increased extractability of polyphenols during the winemaking process. To unravel the molecular mechanism underlying this phenomenon, we performed whole-genome resequencing to compare VN21 to other TT clones, revealing a 10 Mb deletion in chromosome 11 that likely affected only the L1 meristem cell layer of VN21 and tissues derived from it, such as external cell layers of berry skin.

Microwave treatment of grapes: effect on the must and red wine polysaccharide composition

AIM: The application of microwaves (MW) to the grape is a technique to reduce the contact time with pomace because it allows to break the cell walls of the berry.