Macrowine 2021
IVES 9 IVES Conference Series 9 Kinetic study of browning caused by laccase activity using different substrates

Kinetic study of browning caused by laccase activity using different substrates

Abstract

AIM: To our knowledge all the studies about laccase kinetics and its inhibition have been performed with substrates and conditions very different from those of real grape juice. Moreover, none of these researches really measure enzymatic browning, since they have not taken into account what happens after the oxidation of o-diphenols in o-diquinones and their subsequent polymerization to form melanins1. For that reason, the aim of this research was to develop a new model to measure the kinetics of browning caused by Botrytis cinerea laccase under conditions much closer to those of grape juice and using the substrates naturally present in it.

METHODS: A grape juice model solution containing 100 g/L of D-glucose, 100 g/L of D-fructose and 4 g/L of tartaric acid adjusted to pH 3.5 was used for all the browning assays. Five phenolic compounds including one triphenol: gallic acid; three orthodiphenols: caftaric acid, (+)-catechin and (-)-epicatechin; and one monophenol: 4-hydroxybenzoic acid were used at concentrations between 0 and 0.8 mM. Laccase from Botrytis cinerea was purified according to Vignault et al., (2019)2. Browning reaction was started by adding 2 units of laccase activity/mL and absorbance at 420 nm was measured at time 0, 15, 30 and 45 minutes. The slope of the regression straight line was determined in order to express the intensity of browning. The Michaëlis-Menten and Hill plots were depicted for each substrate in order to determine the kinetic parameters of browning: Vmax, K0.5 and Hill number. All the experiments were performed in triplicate

RESULTS: The results indicate that o-diphenols are better substrates for laccase browning than triphenols and that monophenols, or at least 4-hydroxybenzoic acid, do not appear to be reactive. Moreover, of the o-diphenols, (+)-catechin showed the greatest browning intensity, followed in decreasing order by (-)-epicatechin and caftaric acid.

CONCLUSIONS: This research proposes a synthetic model for measuring laccase browning in a matrix close to real grape juice that makes it possible to study how laccase browning acts in the presence of different possible substrates. Further studies are needed to verify the efficiency of the proposed model on other laccase substrates such as anthocyanins, flavonols and proantocyanidins, and also to determine the inhibitory effect toward laccase browning of the most frequently used antioxidants – sulfur dioxide, ascorbic acid and glutathione – and other possible inhibitors of laccase browning such as oenological tannins.

FUNDING:

This work was funded by CICYT (Efecto de las lacasas sobre la sensorialidad, calidad y salubridad de los vinosproject RTI2018-095658-B-C33).

ACKNOWLEDGMENTS:

Authors thank professors Marc Fermaud and Jean Roudet from INRAE, UMR SAVE, Bordeaux Science Agro, ISVV, France for having provided us with the B. cinerea strain.

DOI:

Publication date: September 28, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fernando Zamora, Pol Giménez, Sergi Anguela, Arnau Just-Borras, Pere Pons-Mercadé, Jordi Gombau, Adeline Vignault,  Joan Miquel Canals, Pierre-Louis Teissedre, Fernando Zamora

Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain.
Unité de Recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France. – 11 rue Aristide Bergès, 33270 Floirac, France,

Contact the author

Keywords

laccase, botrytis cinerea, browning, kinetics

Citation

Related articles…

Soil chemistry as a measure of the distinctiveness of american viticultural areas of the Columbia basin, USA

The Columbia Basin, a semi-arid region centered in the eastern part of Washington State, is the second largest wine grape growing region in the United States and presently contains 10 American Viticultural Areas

Lamp – a modern tool for the detection of fungal infections in the vineyard

AIM: Loop-mediated isothermal amplification (LAMP) [1] is a modern technology for fast and sensitive amplification of specific DNA sequences under isothermal conditions. Its simple handling and no need for dedicated equipment together with an evaluation of the amplification event by in-tube detection make this method advantageous and economically affordable for on-site investigations in the industry.

Soil variability effects on vine rootzones and available water

Aim: The aim of this work is educating people about soil variability, vine rootzone depth and readily available water holding capacity. The concept of terroir is readily discussed in the wine industry but many people involved are unable to describe a soil profile and interpret its limitations that impact on vine growth, fruit quality and wine produced. This paper discusses soil physical characteristics important to vine root growth and readily available water holding capacity (RAW).

Olfactometric and sensory study of red wines subjected to ultrasound or microwaves during their elaboration

The effect that some extraction techniques, such as ultrasound (Cacciola, Batllò, Ferraretto, Vincenzi, & Celotti, 2013; Povey & McClements, 1988) or microwaves (Carew, Close, & Dambergs, 2015; Carew, Gill, Close, & Dambergs, 2014) produce on the aroma of red wines, when applied to processes of extractive nature, such as pre-fermentative maceration or ageing with oak chips (Spanish oak – Quercus pyrenaica and French oak – Quercus robur) has been studied. The volatile profile was determined by means of gas chromatography coupled with olfactometric and mass spectrometric detection. A sensory analysis was also carried out. No indications were found to show that the pre-fermentative treatment with microwaves or ultrasound modified the sensory profile of the wines whereas the application of such energies during the ageing phase showed some positive trends at sensory level.

Aging in amphorae with different porosity for sustainable production of Nero d’Avola wine

In recent years, the use of amphorae in winemaking has become more frequent, symbolizing a return to the origins of vinification to broaden the availability of wines with different style.