Macrowine 2021
IVES 9 IVES Conference Series 9 Kinetic study of browning caused by laccase activity using different substrates

Kinetic study of browning caused by laccase activity using different substrates

Abstract

AIM: To our knowledge all the studies about laccase kinetics and its inhibition have been performed with substrates and conditions very different from those of real grape juice. Moreover, none of these researches really measure enzymatic browning, since they have not taken into account what happens after the oxidation of o-diphenols in o-diquinones and their subsequent polymerization to form melanins1. For that reason, the aim of this research was to develop a new model to measure the kinetics of browning caused by Botrytis cinerea laccase under conditions much closer to those of grape juice and using the substrates naturally present in it.

METHODS: A grape juice model solution containing 100 g/L of D-glucose, 100 g/L of D-fructose and 4 g/L of tartaric acid adjusted to pH 3.5 was used for all the browning assays. Five phenolic compounds including one triphenol: gallic acid; three orthodiphenols: caftaric acid, (+)-catechin and (-)-epicatechin; and one monophenol: 4-hydroxybenzoic acid were used at concentrations between 0 and 0.8 mM. Laccase from Botrytis cinerea was purified according to Vignault et al., (2019)2. Browning reaction was started by adding 2 units of laccase activity/mL and absorbance at 420 nm was measured at time 0, 15, 30 and 45 minutes. The slope of the regression straight line was determined in order to express the intensity of browning. The Michaëlis-Menten and Hill plots were depicted for each substrate in order to determine the kinetic parameters of browning: Vmax, K0.5 and Hill number. All the experiments were performed in triplicate

RESULTS: The results indicate that o-diphenols are better substrates for laccase browning than triphenols and that monophenols, or at least 4-hydroxybenzoic acid, do not appear to be reactive. Moreover, of the o-diphenols, (+)-catechin showed the greatest browning intensity, followed in decreasing order by (-)-epicatechin and caftaric acid.

CONCLUSIONS: This research proposes a synthetic model for measuring laccase browning in a matrix close to real grape juice that makes it possible to study how laccase browning acts in the presence of different possible substrates. Further studies are needed to verify the efficiency of the proposed model on other laccase substrates such as anthocyanins, flavonols and proantocyanidins, and also to determine the inhibitory effect toward laccase browning of the most frequently used antioxidants – sulfur dioxide, ascorbic acid and glutathione – and other possible inhibitors of laccase browning such as oenological tannins.

FUNDING:

This work was funded by CICYT (Efecto de las lacasas sobre la sensorialidad, calidad y salubridad de los vinosproject RTI2018-095658-B-C33).

ACKNOWLEDGMENTS:

Authors thank professors Marc Fermaud and Jean Roudet from INRAE, UMR SAVE, Bordeaux Science Agro, ISVV, France for having provided us with the B. cinerea strain.

DOI:

Publication date: September 28, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fernando Zamora, Pol Giménez, Sergi Anguela, Arnau Just-Borras, Pere Pons-Mercadé, Jordi Gombau, Adeline Vignault,  Joan Miquel Canals, Pierre-Louis Teissedre, Fernando Zamora

Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo, 1. 43007 Tarragona, Spain.
Unité de Recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France. – 11 rue Aristide Bergès, 33270 Floirac, France,

Contact the author

Keywords

laccase, botrytis cinerea, browning, kinetics

Citation

Related articles…

A comparative study on physiological responses to drought in wild Vitis species 

The crossings of three wild Vitis species are commonly used as rootstocks in wine production worldwide. Factors such as disease resistance and vigor are most important for their selection.
With climate change extending drought conditions and water limitations, the selection of rootstocks conferring increased tolerance to drought takes on greater importance. Therefore, identifying Vitis species with improved drought tolerance and incorporating them into breeding programs could contribute to more resilient rootstocks under water limiting conditions. Furthermore, those species serve as a valuable resource to increase genetic variability of rootstocks. We hypothesize that species native to drier habitats will exhibit superior physiological performance under drought stress.

Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Aims: Forecasting the biomass allocation among source and sinks organs is crucial to better understand how grapevines control the distribution of acquired resources and has a great meaning in term of making decisions about agricultural practices in vineyards. Modelling plant growth and development is one of prediction approaches that play this role when it concerns growth rates in response to variation in environmental conditions

Determination of titratable acidity, sugar and organic acid content in red and white wine grape cultivars during ripening by VIS–NIR hy¬perspectral imaging

Grape harvest time is one of the most fundamental aspects that affect grape quality and thus wine quality. Many factors influence the decision of harvest; among them technological and phenolic maturity of grape. Technological ripeness is mainly related to sugar concentration, titratable acidity and pH. Conventional methods for chemical analysis of grapes are normally sample-destructive, time-consuming, include laborious sample preparation steps, and generate chemical waste, thereby limiting their utility in online/in-line quality monitoring. Moreover, destructive analyses can be performed only on a limited number of fruit pieces and, thus, their statistical relevance could be limited. This study evaluated the ability of a lab-scale hyperspectral imaging (HYP-IM) technique to predict titratable acidity, organic acid and sugar content of grapes. Samples of Cabernet franc and Chenin blanc grapes were consecutively collected six times at weekly intervals after veraison. The images were recorded thanks to the hyperspectral imaging camera Pica L (Resonon) in a spectral range from 400 to 1000 nm. Statistics were performed using Microsoft Xlstat software. Successively, the berries were analyzed for their sugar (glucose and fructose) and organic acid (malic and tartaric acid) content and titratable acidity according to usual methods.

Il piano regolatore delle citta’ del vino

Obiettivo generale di questo documenta è fornire un metodo di pianificazione che superi l’organizzazione delle aree rurali, ed in particolare vitate, finalizzata unicamente all’ot­timizzazione economico produttiva delle aziende, verso una pianificazione integrata degli spazi aperti.

Detection of spider mite using artificial intelligence in digital viticulture

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions.