WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 HRATA : A new sensory methodology using advantage of wine aromatic wheels

HRATA : A new sensory methodology using advantage of wine aromatic wheels

Abstract

Wine is an intrinsically complex aromatic product. To formalize this aromatic diversity and the hierarchical structure of the aromas, it is common to present them in the form of a wheel of aromas. These are used for learning and communication purposes but never for the acquisition of sensory characteristics.

The HRATA (Hierarchical Rate All That Apply) methodology proposes to combine the benefits of methodologies traditionally used in sensory evaluation. It proposes both 1°) a complete characterization of the aromas based on a RATA approach that gives tasters a strong freedom in the evaluation of an exhaustive list of attributes and 2°) a hierarchical presentation of attributes that allows tasters to position more or less accurately (family, category or term) according to their perceptions. It facilitates also data acquisition in a professional context without previous common training. Coupled with a computerized user-friendly interface in the form of an interactive aroma wheel, tasters can easily choose and score as many attributes as necessary with different levels of precision if they wish.

This original methodology was tested with 6 wines of Chenin grape variety from the Loire Valley and using the wheels of the Chenin aromas proposed by WOSA. Twenty-four tasters characterized each wine twice with the sole instruction to score as many attributes as necessary on the wheel. Several statistical strategies were compared to analyze this original dataset and to improve the data interpretation and presentation. Some technical issues will be also discussed.

This methodology would be very relevant for exploring the relationships between sensory and physico-chemical characteristics or for studying some sensory concepts such as the typicity or complexity of wines.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Ronan SYMONEAUX, Corine PATRON, Etienne NEETHLINGE, Cécile COULON-LEROY

Presenting author

Ronan SYMONEAUX – GRAPPE – Ecole Supérieure d’Agricultures – INRAE

GRAPPE – Ecole Supérieure d’Agriculture – INRAE

Contact the author

Keywords

Aroma, Sensory Evaluation, RATA, Chenin

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Evolution of the metabolic profile of grapes in a context of climate change

In the current context of global climate change, anticipating the evolution of the oenological potential of emblematic grape varieties of regions such as Burgundy and Champagne is a guarantee of the sustainability of a sector which has considerable economic weight. however, if various models of climate change cast doubt on the sustainability of these grape varieties in these regions, appellation decrees, as well as consumer expectations, do not allow or consider the use of alternative grape varieties. In addition, control/compensation methods such as irrigation are also not permitted.

Ancient and recent construction of Terroirs

The local wine as an area identified and recognized is a complex socio-historical reality that calls an effort of observation and theoretical reflection using various social sciences

Volatile organic compounds: a role in elicitor-induced resistance of grapevine against pathogens?

As Vitis vinifera varieties are susceptible to fungal diseases, numerous chemical treatments are generally required to ensure the quantity and quality of the harvest. However, in the context of sustainable viticulture, there are increasing societal request, political incitation, and winegrowers’ awareness to reduce the use of pesticides.

Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Knowledge has been accumulated on the impact of microclimate, in particular berry temperature and irradiation, for a wide range of red varieties. However, little research has been dedicated on the effects of the same factors on the quality of white grape varieties.

Scalable asymptomatic grapevine leafroll virus complex-3 detection through integrated airborne imaging spectroscopy, autonomous robotics, and cloud computing

The past three decades of terrestrial remote sensing research have delivered unprecedented insights into our fundamental ability to detect, quantify, and differentiate plant disease (Gold 2021). However, much of our fundamental knowledge in this domain has come from studies in non-agricultural systems and until recently, most agricultural studies, when extant, have focused on tree crops where canopy closure and large plot and plant size facilitate stress detection at low spatial resolution. Recent engineering innovations and advancements in constellation architecture design have refined the accuracy and scalability of airborne and spaceborne sensing platforms, enabling us to monitor diverse specialty crops, including grapevine, planted in smaller, spatially varied fields.