WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 HRATA : A new sensory methodology using advantage of wine aromatic wheels

HRATA : A new sensory methodology using advantage of wine aromatic wheels

Abstract

Wine is an intrinsically complex aromatic product. To formalize this aromatic diversity and the hierarchical structure of the aromas, it is common to present them in the form of a wheel of aromas. These are used for learning and communication purposes but never for the acquisition of sensory characteristics.

The HRATA (Hierarchical Rate All That Apply) methodology proposes to combine the benefits of methodologies traditionally used in sensory evaluation. It proposes both 1°) a complete characterization of the aromas based on a RATA approach that gives tasters a strong freedom in the evaluation of an exhaustive list of attributes and 2°) a hierarchical presentation of attributes that allows tasters to position more or less accurately (family, category or term) according to their perceptions. It facilitates also data acquisition in a professional context without previous common training. Coupled with a computerized user-friendly interface in the form of an interactive aroma wheel, tasters can easily choose and score as many attributes as necessary with different levels of precision if they wish.

This original methodology was tested with 6 wines of Chenin grape variety from the Loire Valley and using the wheels of the Chenin aromas proposed by WOSA. Twenty-four tasters characterized each wine twice with the sole instruction to score as many attributes as necessary on the wheel. Several statistical strategies were compared to analyze this original dataset and to improve the data interpretation and presentation. Some technical issues will be also discussed.

This methodology would be very relevant for exploring the relationships between sensory and physico-chemical characteristics or for studying some sensory concepts such as the typicity or complexity of wines.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Ronan SYMONEAUX, Corine PATRON, Etienne NEETHLINGE, Cécile COULON-LEROY

Presenting author

Ronan SYMONEAUX – GRAPPE – Ecole Supérieure d’Agricultures – INRAE

GRAPPE – Ecole Supérieure d’Agriculture – INRAE

Contact the author

Keywords

Aroma, Sensory Evaluation, RATA, Chenin

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵

OTR determination of aged closures: Impact on aroma compounds composition of Sauvignon blanc wines

Oxygen transfer rate (OTR) is a technical property of closure, and it modulates the oxygen supply to the wine during its bottle aging. It’s an important parameter to take into account in the analysis of wine aroma evolution. OTR distribution is well documented for new closures, but little research has been published on its determination for aged closures. Initial oxygen release after bottling impacts the composition of wines during the first years of storage), but the link between OTR, sensory perception and aroma composition after many years of aging has not yet been clearly studied. 

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Assessing the relationship between cordon strangulation, dieback, and fungal trunk disease symptom expression

Grapevine trunk diseases including Eutypa dieback are a major factor in the decline of vineyards and may lead to loss of productivity, reduced income, and premature reworking or replanting. Several studies have yielded results indicating that vines may be more likely to express symptoms of vascular disease if their health is already compromised by stress. In Australia and many other wine-growing regions it is a common practice for canes to be wrapped tightly around the cordon wire during the establishment of permanent cordon arms. It is likely that this practice may have a negative effect on health and longevity, as older cordons that have been trained in this manner often display signs of decay and dieback, with the wire often visibly embedded within the wood of the cordon. It is possible that adopting a training method which avoids constriction of the vasculature of the cordon may help to limit the onset of vascular disease symptom expression. A survey was conducted during the spring of two consecutive growing seasons on vineyards in South Australia displaying symptoms of Eutypa lata infection when symptomless shoots were 50–100 cm long. Vines were assessed as follows: (i) the proportion of cordon exhibiting dieback was rated using a 0–100% scale; (ii) the proportion of canopy exhibiting foliar symptoms of Eutypa dieback was rated using a 0–100% scale; (iii) the severity of strangulation was rated using a 0–4 point scale. Images were also taken of each vine for the purpose of measuring plant area index (PAI) using the VitiCanopy App. The goal of the survey was to determine if and to what extent any correlation exists between severity of strangulation and cordon dieback, in addition to Eutypa dieback foliar symptom expression.