WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 HRATA : A new sensory methodology using advantage of wine aromatic wheels

HRATA : A new sensory methodology using advantage of wine aromatic wheels

Abstract

Wine is an intrinsically complex aromatic product. To formalize this aromatic diversity and the hierarchical structure of the aromas, it is common to present them in the form of a wheel of aromas. These are used for learning and communication purposes but never for the acquisition of sensory characteristics.

The HRATA (Hierarchical Rate All That Apply) methodology proposes to combine the benefits of methodologies traditionally used in sensory evaluation. It proposes both 1°) a complete characterization of the aromas based on a RATA approach that gives tasters a strong freedom in the evaluation of an exhaustive list of attributes and 2°) a hierarchical presentation of attributes that allows tasters to position more or less accurately (family, category or term) according to their perceptions. It facilitates also data acquisition in a professional context without previous common training. Coupled with a computerized user-friendly interface in the form of an interactive aroma wheel, tasters can easily choose and score as many attributes as necessary with different levels of precision if they wish.

This original methodology was tested with 6 wines of Chenin grape variety from the Loire Valley and using the wheels of the Chenin aromas proposed by WOSA. Twenty-four tasters characterized each wine twice with the sole instruction to score as many attributes as necessary on the wheel. Several statistical strategies were compared to analyze this original dataset and to improve the data interpretation and presentation. Some technical issues will be also discussed.

This methodology would be very relevant for exploring the relationships between sensory and physico-chemical characteristics or for studying some sensory concepts such as the typicity or complexity of wines.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Ronan SYMONEAUX, Corine PATRON, Etienne NEETHLINGE, Cécile COULON-LEROY

Presenting author

Ronan SYMONEAUX – GRAPPE – Ecole Supérieure d’Agricultures – INRAE

GRAPPE – Ecole Supérieure d’Agriculture – INRAE

Contact the author

Keywords

Aroma, Sensory Evaluation, RATA, Chenin

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

New satellite-based sampling protocols for grapevine nutrient monitoring

Extension specialists often recommend nutrient monitoring through leaf blade or petiole sampling twice a season for each vineyard block. However, due to the time and labor required to collect a large, random sample, many growers complete the task infrequently or incorrectly. Readily available remote sensing images capture the vineyard variability at both spatial and temporal scales, which can capture canopy and soil variability and be used to guide growers to representative sampling locations.

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow

Effect of partial net shading on the temperature and radiation in the grapevine canopy, consequences on the grape quality of cv. Gros Manseng in PDO Pacherenc-du-vic-Bilh

As elsewhere, southwestern France vineyards face more recurrent summer heat waves these last years. Among the possibilities of adaptation to this climate changing parameter, the use of net shading is a technique that allow for limiting canopy exposure to radiations. In this trial, we tested net shading installed on one face of the canopy, on a north-south row-oriented plot of cv. Gros Manseng trained on VSP system in the PDO Pacherenc-du-Vic-Bilh. The purpose was to characterize the effects on the ambient canopy temperatures and radiations during the season and to observe the consequences on the composition of grapes and wines. Two sorts of net were used with two levels of obstruction (50% and 75%) of the photosynthesis active radiation (PAR). They have been installed on the west side of the canopy and compared to a netless control. Temperature and PAR sensors registered hourly data during the season. On specific summer day (hot and sunny) manual measurements took also place on bunches (temperature) and in different spots of the canopy (PAR). The results showed that, on clear days, the radiation is lowered by the shade nets respecting the supplier criteria. The effects on the ambient canopy temperature were inconstant on this plot when we observed the data from the global period of shading between fruit set and harvest. However, during hot days (>30°C), the temperature in the canopy was reduced during afternoon and the temperature of the bunch surface was reduced as well comparing to the control. A decrease of the maturity parameters of the berries, sugar and acidity, was also observed. Concerning the wine aromatic potential, no differences clearly appeared.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].