WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Accurate Quantification of Quality Compounds and Varietal Classification from Grape Extracts using the Absorbance-Transmittance Fluorescence Excitation Emission Matrix (A-TEEM) Method and Machine Learning

Accurate Quantification of Quality Compounds and Varietal Classification from Grape Extracts using the Absorbance-Transmittance Fluorescence Excitation Emission Matrix (A-TEEM) Method and Machine Learning

Abstract

Rapid and accurate quantification of grape berry phenolics, anthocyanins and tannins, and identification of grape varieties are both important for effective quality control of harvesting and initial processing for wine making. Current reference technologies including High Performance Liquid Chromatography (HPLC) can be rate limiting and too complex and expensive for effective field operations. Secondary calibrated techniques including UV-VIS and Near and Mid Infrared spectroscopy are insensitive to specific quality compounds and unable to make accurate varietal assignments. In this paper we analyze robotically prepared grape extracts from several key varieties (n=Calibration/p=Prediction samples) including Cabernet sauvignon (64/10), Grenache (16/4), Malbec (14/4), Merlot (56/10), Petit syrah (52/10), Pinot noir (54/8), Syrah (20/2), Terlodego (14/2) and Zinfandel (62/12). Key phenolic and anthocyanin parameters measured by HPLC included Catechin, Epicatechin, Quercetin Glycosides, Malvidin 3-glucoside, Total Anthocyanins and Polymeric Tannins. Separate samples diluted 150 fold in 50% EtOH pH 2 were analyzed in parallel using the A-TEEM method following Multiblock Data Fusion of the absorbance and unfolded EEM data. A-TEEM chemical data were calibrated (n=390) using Extreme Gradient Boost (XGB) Regression and evaluated based on the Root Mean Square Error of the Prediction (RMSEP), the Relative Error of Prediction (REP%) and Coefficient of Variation (R2P) of the Prediction data (n=62). The regression results yielded an average REP% value of 6.0±2.4% and R2P of 0.941±0.024. While we consider the REP% values to be in the acceptable range at <10% we acknowledge that both the grape extraction method repeatability and HPLC reference method repeatability likely contributed the major sources of variation; e.g., A-TEEM sample REP%=1.31 for Polymeric Tannins. Varietal classification was analyzed using XGB discrimination analysis of the Multiblock data and evaluated based on the Prediction data. The classification results yielded 100% True Positive and True negative results for the Prediction Data for all varieties. We conclude that the A-TEEM method requires a minimum of sample preparation and rapid acquisition times (<1 min) and can serve as an accurate secondary method for both grape composition and varietal identification. Importantly, the application of the regression and classification models can be effectively automated for operators.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Adam, Gilmore, Qiang, Sui

Presenting author

Adam, Gilmore – HORIBA Instruments Inc.

E & J Gallo Wines

Contact the author

Keywords

Extreme Gradient Boost – Phenolics – Anthocyanins- Tannins-Grape Variety

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The impact of decadal cold waves over Europe on future viticultural practices

A crucial issue associated with the long-term impact of climate change in viticulture concerns the capacity of resilience of the typical varieties currently cultivated in traditional areas. Indeed, regions that are currently characterized by optimal climatic conditions can cease to be so in the future. At the same time, new premium wine production regions may arise north of 50oN. Both these threats and opportunities are based on the assessment of a very likely gradual temperature increase along the 21st century, resulting from the ensemble mean of the state-of-the-art climate projections. Such an assessment is orienting decision-makers and stakeholders to rethink the grapevine cultivation zoning, prefiguring, for each variety, a shift at higher latitudes and/or at higher altitudes areas.

Preliminary studies on polyphenol assessment by Fourier transform-near infrared spectroscopy (FT-NIR) in grape berries

NIR spectroscopy has widely been tested in viticulture as powerful alternative to traditional analytical methods in the field of quality evaluation. NIR instruments have been used for assessing must and wine quality features in several works, but little information regarding their application on whole berries for polyphenol determination is available.

Targeted and untargeted 1H-NMR analysis for sparkling wine’s authenticity

Studies on wineomics (wine’s metabolome) have increased considerably over the last two decades. Wine results from many environmental, human and biological factors leading to a specific metabolome for each terroir. NMR metabolomics is a particularly effective tool for studying the metabolome since it allows the rapid and simultaneous detection of major compounds from several chemical families.1 Quantitative NMR has already proven its effectiveness in monitoring the authenticity of still wines.

Zoning of the Veneto region areas with Denomination of origin

To characterize in depth the enological productions according to the origin territories and to provide modern tools for the qualitative raising of the assorted typologies of wine produced, Veneto Agricoltura (the regional agency for the agriculture, forestry and food industry development), the Regional Government of Veneto (north-eastern Italy) and various Consortia of Producers have undertaken since 2002 a systematic classification of the viticultural territories by agro-ecological zoning to achieve a strategic project aimed to set Veneto as the first Italian region to have completed in a systematic and scientifically rigorous way the zoning of most of its Denomination of Origin areas.

Publication of the 3rd edition of the OIV ampelographic descriptors

Ampelography is aimed at describing the vine according to several characteristics, such as morphology, agronomic aptitudes, technological potential, and genetics. The description of varieties and species of vitis has long been the subject of numerous scientific and technical studies by eminent specialists for a long time, which have led the OIV to publish in 1983 the “descriptor list for grape varieties and vitis species”, a milestone among the OIV worldwide recognised codes.