WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Accurate Quantification of Quality Compounds and Varietal Classification from Grape Extracts using the Absorbance-Transmittance Fluorescence Excitation Emission Matrix (A-TEEM) Method and Machine Learning

Accurate Quantification of Quality Compounds and Varietal Classification from Grape Extracts using the Absorbance-Transmittance Fluorescence Excitation Emission Matrix (A-TEEM) Method and Machine Learning

Abstract

Rapid and accurate quantification of grape berry phenolics, anthocyanins and tannins, and identification of grape varieties are both important for effective quality control of harvesting and initial processing for wine making. Current reference technologies including High Performance Liquid Chromatography (HPLC) can be rate limiting and too complex and expensive for effective field operations. Secondary calibrated techniques including UV-VIS and Near and Mid Infrared spectroscopy are insensitive to specific quality compounds and unable to make accurate varietal assignments. In this paper we analyze robotically prepared grape extracts from several key varieties (n=Calibration/p=Prediction samples) including Cabernet sauvignon (64/10), Grenache (16/4), Malbec (14/4), Merlot (56/10), Petit syrah (52/10), Pinot noir (54/8), Syrah (20/2), Terlodego (14/2) and Zinfandel (62/12). Key phenolic and anthocyanin parameters measured by HPLC included Catechin, Epicatechin, Quercetin Glycosides, Malvidin 3-glucoside, Total Anthocyanins and Polymeric Tannins. Separate samples diluted 150 fold in 50% EtOH pH 2 were analyzed in parallel using the A-TEEM method following Multiblock Data Fusion of the absorbance and unfolded EEM data. A-TEEM chemical data were calibrated (n=390) using Extreme Gradient Boost (XGB) Regression and evaluated based on the Root Mean Square Error of the Prediction (RMSEP), the Relative Error of Prediction (REP%) and Coefficient of Variation (R2P) of the Prediction data (n=62). The regression results yielded an average REP% value of 6.0±2.4% and R2P of 0.941±0.024. While we consider the REP% values to be in the acceptable range at <10% we acknowledge that both the grape extraction method repeatability and HPLC reference method repeatability likely contributed the major sources of variation; e.g., A-TEEM sample REP%=1.31 for Polymeric Tannins. Varietal classification was analyzed using XGB discrimination analysis of the Multiblock data and evaluated based on the Prediction data. The classification results yielded 100% True Positive and True negative results for the Prediction Data for all varieties. We conclude that the A-TEEM method requires a minimum of sample preparation and rapid acquisition times (<1 min) and can serve as an accurate secondary method for both grape composition and varietal identification. Importantly, the application of the regression and classification models can be effectively automated for operators.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Adam, Gilmore, Qiang, Sui

Presenting author

Adam, Gilmore – HORIBA Instruments Inc.

E & J Gallo Wines

Contact the author

Keywords

Extreme Gradient Boost – Phenolics – Anthocyanins- Tannins-Grape Variety

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

Cordon height and deficit irrigation practices interact to affect yield and fruit quality of Cabernet Sauvignon and petite Sirah grown in a hot climate

Cabernet Sauvignon and Petite Sirah are the top red wine cultivars in CA, however, the hot climate in Fresno is not ideal for red Vitis Vinifera, particularly for berry color development. Mechanical pruning and irrigation were studied previously to significantly affect grapevine yield performance and berry quality. But there is lack of studies on cordon height and irrigation on mechanical pruned vineyard system.

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Recent advances in our understanding of the impact of climate change on wine grape production

According to the last IPCC report, the scale of recent climate changes are unprecedented over many centuries. Each of the last four decades has been successively warmer than any decade since 1850. Projections for the future foresee that temperature could reach +3.3°C to +5.7°C under the most pessimistic scenario. It is also projected that every region will face more concurrent and multiple changes in climatic impact-drivers. The frequency of extreme climate events is also likely to increase, as well as the occurrence of indirect constraints. These evolving climatic conditions are alrealdy affecting and will continue to affect the suitability of traditional wine grape production areas, but also create opportunities in new locations.