WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Accurate Quantification of Quality Compounds and Varietal Classification from Grape Extracts using the Absorbance-Transmittance Fluorescence Excitation Emission Matrix (A-TEEM) Method and Machine Learning

Accurate Quantification of Quality Compounds and Varietal Classification from Grape Extracts using the Absorbance-Transmittance Fluorescence Excitation Emission Matrix (A-TEEM) Method and Machine Learning

Abstract

Rapid and accurate quantification of grape berry phenolics, anthocyanins and tannins, and identification of grape varieties are both important for effective quality control of harvesting and initial processing for wine making. Current reference technologies including High Performance Liquid Chromatography (HPLC) can be rate limiting and too complex and expensive for effective field operations. Secondary calibrated techniques including UV-VIS and Near and Mid Infrared spectroscopy are insensitive to specific quality compounds and unable to make accurate varietal assignments. In this paper we analyze robotically prepared grape extracts from several key varieties (n=Calibration/p=Prediction samples) including Cabernet sauvignon (64/10), Grenache (16/4), Malbec (14/4), Merlot (56/10), Petit syrah (52/10), Pinot noir (54/8), Syrah (20/2), Terlodego (14/2) and Zinfandel (62/12). Key phenolic and anthocyanin parameters measured by HPLC included Catechin, Epicatechin, Quercetin Glycosides, Malvidin 3-glucoside, Total Anthocyanins and Polymeric Tannins. Separate samples diluted 150 fold in 50% EtOH pH 2 were analyzed in parallel using the A-TEEM method following Multiblock Data Fusion of the absorbance and unfolded EEM data. A-TEEM chemical data were calibrated (n=390) using Extreme Gradient Boost (XGB) Regression and evaluated based on the Root Mean Square Error of the Prediction (RMSEP), the Relative Error of Prediction (REP%) and Coefficient of Variation (R2P) of the Prediction data (n=62). The regression results yielded an average REP% value of 6.0±2.4% and R2P of 0.941±0.024. While we consider the REP% values to be in the acceptable range at <10% we acknowledge that both the grape extraction method repeatability and HPLC reference method repeatability likely contributed the major sources of variation; e.g., A-TEEM sample REP%=1.31 for Polymeric Tannins. Varietal classification was analyzed using XGB discrimination analysis of the Multiblock data and evaluated based on the Prediction data. The classification results yielded 100% True Positive and True negative results for the Prediction Data for all varieties. We conclude that the A-TEEM method requires a minimum of sample preparation and rapid acquisition times (<1 min) and can serve as an accurate secondary method for both grape composition and varietal identification. Importantly, the application of the regression and classification models can be effectively automated for operators.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Adam, Gilmore, Qiang, Sui

Presenting author

Adam, Gilmore – HORIBA Instruments Inc.

E & J Gallo Wines

Contact the author

Keywords

Extreme Gradient Boost – Phenolics – Anthocyanins- Tannins-Grape Variety

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Progetto di zonazione delle valli di Cembra e dell’Adige. Analisi del comportamento della varietà Pinot nero in ambiente subalpino

Nel 1990 la Cantina LA VIS ha intrapreso un progetto di zonazione dei terreni vitati allo scopo di acquisire le conoscenze scientifiche atte a consentire il miglioramento delle qualità dei prodotti. Tale progetto si è articolato su di una superficie di 2000 ettari ubicati lungo l’asta fluviale del fiume Adige da Trento a Salorno e del torrente Avisio da Lavis a Segonzano.

Come proteggere un territorio viticolo: il punto di vista del giurista

La valanga di fango che si è abbattuta nel Salemitano e nell’Avellinese, provocando decine di vittime, è stata causata in larga misura dalle insufficienti opere idrauliche e dalla manca­ta manutenzione di antiquati canali idrici.

Antioxidant activity of yeast peptides released during fermentation and autolysis in model conditions

Aging wine on lees benefits different wine sensory and technological properties including an enhanced resistance to oxidation. Several molecules released by yeast, such as membrane sterols and glutathione, have been previously proposed as key factors for this activity [1].

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality.

The ability of wine yeasts fermenting by the addition of exogenous biotin

Research is focused on the increase of the field of obtaining the wine yeast, under physical and chemical conditions. Study of different influences on yeast production is very important for the promotion