WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Accurate Quantification of Quality Compounds and Varietal Classification from Grape Extracts using the Absorbance-Transmittance Fluorescence Excitation Emission Matrix (A-TEEM) Method and Machine Learning

Accurate Quantification of Quality Compounds and Varietal Classification from Grape Extracts using the Absorbance-Transmittance Fluorescence Excitation Emission Matrix (A-TEEM) Method and Machine Learning

Abstract

Rapid and accurate quantification of grape berry phenolics, anthocyanins and tannins, and identification of grape varieties are both important for effective quality control of harvesting and initial processing for wine making. Current reference technologies including High Performance Liquid Chromatography (HPLC) can be rate limiting and too complex and expensive for effective field operations. Secondary calibrated techniques including UV-VIS and Near and Mid Infrared spectroscopy are insensitive to specific quality compounds and unable to make accurate varietal assignments. In this paper we analyze robotically prepared grape extracts from several key varieties (n=Calibration/p=Prediction samples) including Cabernet sauvignon (64/10), Grenache (16/4), Malbec (14/4), Merlot (56/10), Petit syrah (52/10), Pinot noir (54/8), Syrah (20/2), Terlodego (14/2) and Zinfandel (62/12). Key phenolic and anthocyanin parameters measured by HPLC included Catechin, Epicatechin, Quercetin Glycosides, Malvidin 3-glucoside, Total Anthocyanins and Polymeric Tannins. Separate samples diluted 150 fold in 50% EtOH pH 2 were analyzed in parallel using the A-TEEM method following Multiblock Data Fusion of the absorbance and unfolded EEM data. A-TEEM chemical data were calibrated (n=390) using Extreme Gradient Boost (XGB) Regression and evaluated based on the Root Mean Square Error of the Prediction (RMSEP), the Relative Error of Prediction (REP%) and Coefficient of Variation (R2P) of the Prediction data (n=62). The regression results yielded an average REP% value of 6.0±2.4% and R2P of 0.941±0.024. While we consider the REP% values to be in the acceptable range at <10% we acknowledge that both the grape extraction method repeatability and HPLC reference method repeatability likely contributed the major sources of variation; e.g., A-TEEM sample REP%=1.31 for Polymeric Tannins. Varietal classification was analyzed using XGB discrimination analysis of the Multiblock data and evaluated based on the Prediction data. The classification results yielded 100% True Positive and True negative results for the Prediction Data for all varieties. We conclude that the A-TEEM method requires a minimum of sample preparation and rapid acquisition times (<1 min) and can serve as an accurate secondary method for both grape composition and varietal identification. Importantly, the application of the regression and classification models can be effectively automated for operators.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Adam, Gilmore, Qiang, Sui

Presenting author

Adam, Gilmore – HORIBA Instruments Inc.

E & J Gallo Wines

Contact the author

Keywords

Extreme Gradient Boost – Phenolics – Anthocyanins- Tannins-Grape Variety

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Prospects for enlarging of microzone Manavi in the East Georgia

The experimental studies conducted in the eastern Georgia in Sagarejo administrative district on the foothills of the southern slope of Tsiv-Gombori range reveal the possibility of enlarging Manavi traditional specific zone to the north-west (from Giorgitsminda to Khashmi), at 500-750 m above sea level.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

Influence of soil type and changes in soil solution chemistry on vine growth parameters and grape and wine quality in a central coast California vineyard

The objective of this study was to determine the influence of four soils with contrasting chemical and physical properties on vine growth parameters and wine chemistry in a Paso Robles, California Cabernet Sauvignon vineyard

VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal stimuli to ensure timely flowering. During early stages of flower formation, SOC1 represses floral organ identity genes such as AGAMOUS (AG) to prevent premature organ differentiation. In addition to floral organ specification, AG has been shown to regulate fleshy fruit expansion and ripening and, as such, is an important contributor to fruit quality traits. Currently, little is known about the function and gene regulatory network of the grapevine homologs VviSOC1a and VviAG1. As such, the aim of this study was to functionally characterise both genes by overexpressing them in tomato and performing phenotypic and gene expression studies.

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.