WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Accurate Quantification of Quality Compounds and Varietal Classification from Grape Extracts using the Absorbance-Transmittance Fluorescence Excitation Emission Matrix (A-TEEM) Method and Machine Learning

Accurate Quantification of Quality Compounds and Varietal Classification from Grape Extracts using the Absorbance-Transmittance Fluorescence Excitation Emission Matrix (A-TEEM) Method and Machine Learning

Abstract

Rapid and accurate quantification of grape berry phenolics, anthocyanins and tannins, and identification of grape varieties are both important for effective quality control of harvesting and initial processing for wine making. Current reference technologies including High Performance Liquid Chromatography (HPLC) can be rate limiting and too complex and expensive for effective field operations. Secondary calibrated techniques including UV-VIS and Near and Mid Infrared spectroscopy are insensitive to specific quality compounds and unable to make accurate varietal assignments. In this paper we analyze robotically prepared grape extracts from several key varieties (n=Calibration/p=Prediction samples) including Cabernet sauvignon (64/10), Grenache (16/4), Malbec (14/4), Merlot (56/10), Petit syrah (52/10), Pinot noir (54/8), Syrah (20/2), Terlodego (14/2) and Zinfandel (62/12). Key phenolic and anthocyanin parameters measured by HPLC included Catechin, Epicatechin, Quercetin Glycosides, Malvidin 3-glucoside, Total Anthocyanins and Polymeric Tannins. Separate samples diluted 150 fold in 50% EtOH pH 2 were analyzed in parallel using the A-TEEM method following Multiblock Data Fusion of the absorbance and unfolded EEM data. A-TEEM chemical data were calibrated (n=390) using Extreme Gradient Boost (XGB) Regression and evaluated based on the Root Mean Square Error of the Prediction (RMSEP), the Relative Error of Prediction (REP%) and Coefficient of Variation (R2P) of the Prediction data (n=62). The regression results yielded an average REP% value of 6.0±2.4% and R2P of 0.941±0.024. While we consider the REP% values to be in the acceptable range at <10% we acknowledge that both the grape extraction method repeatability and HPLC reference method repeatability likely contributed the major sources of variation; e.g., A-TEEM sample REP%=1.31 for Polymeric Tannins. Varietal classification was analyzed using XGB discrimination analysis of the Multiblock data and evaluated based on the Prediction data. The classification results yielded 100% True Positive and True negative results for the Prediction Data for all varieties. We conclude that the A-TEEM method requires a minimum of sample preparation and rapid acquisition times (<1 min) and can serve as an accurate secondary method for both grape composition and varietal identification. Importantly, the application of the regression and classification models can be effectively automated for operators.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Adam, Gilmore, Qiang, Sui

Presenting author

Adam, Gilmore – HORIBA Instruments Inc.

E & J Gallo Wines

Contact the author

Keywords

Extreme Gradient Boost – Phenolics – Anthocyanins- Tannins-Grape Variety

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Caractérisation et gestion de la maturation par terroir en Champagne

Pour prévoir et gérer chaque année les principales caractéristiques de la maturation en Champagne, le CIVC (Comité Interprofessionnel du Vin de Champagne) a développé un ensemble de moyens de prévision et d’information très performants qui permettent aux différents acteurs de la filière viti-vinicole de prendre en compte ces informations à l’échelle de chaque terroir communal pour la recherche d’une qualité optimale.

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019).

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

Cabernet-Sauvignon ripening in Chile: follow-up study from 2012 to 2018

Temperature is a relevant parameter during vineyard development, affecting vine phenology and grape maturity. Moreover, the climate of the different Chilean valleys influences the varieties cultivated, the ripening period and the final quality of the wines. The use of growing degree days (GDD) is known worldwide for the study of climate in viticulture regions. However, little is known about the evolution of maturity and the sugar loading stop, based on this parameter.