WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

Abstract

The actual demand by consumers for safer and healthier food and beverage is pushing the wine sector to find alternative methods to avoid the use of sulphur dioxide in winemaking. Ozone is already used in the wine industry to produce sulphur dioxide-free wines through the patented method Purovino®. This study aims to evaluate the effects of ozone treatment used for Purovino® method on grapes berry metabolism and wine quality. Harvested wine grapes (Vitis vinifera L. cv Sangiovese) were fumigated overnight with gaseous ozone. After the treatment grapes were processed to make wine. The technological parameters, volatiles and expression of genes involved in polyphenols and volatile biosynthesis have been analysed in grapes. The aromatic and phenolic profile of the resulting wine has also been assessed. In grapes, ozone treatments increase polyphenols and total flavonoids and consistently specific genes involved in polyphenol biosynthesis were up-regulated. In the resulting wine ozone fumigation increase flavonols content. Additionally, ozone exposition slightly affects the aromatic profile of grapes and wine, mainly due to changes in aroma compounds derived from the lipoxygenase pathway. Overall, the results show that post-harvest ozone treatments applied to avoid the use of sulphur dioxide induce limited but, in general, positive changes in grape and wine. This information could be of great interest for wine makers that, when using ozone treatments are guaranteed in terms of maintenance of quality and typical traits of wines.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Margherita Modesti, Stefano, Brizzolara, Roberto, Forniti, Brunella, Ceccantoni, Andrea, Bellincontro, Andrea, Bellincontro, Fabio, Mencarelli, Pietro, Tonutti, Cesare, Catelli

Presenting author

Margherita Modesti – Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy

Institute of Life Sciences, School of Advanced studies Sant’Anna, Piazza Martiri della Libertà, 33 56127 PISA, ITALY, Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy, P.C. di Pompeo Catelli S.R.L., Via Roma 81, Uggiate Trevano, 22029 Como, Italy, Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy Institute of Life Sciences

Contact the author

Keywords

Ozone, Purovino, sulphur dioxide free wine, flavonoids, flavonols

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The origin and the discovery of “terroir”

Le mot “terroir” dérive du latin “terra”, mais déjà les Romains l’indiquaient comme “locus” ou”loci”, c’est-à-dire un lieu ayant le “genius”destiné à la production d’un produit d’excellente qualité.

The future of pesticide regulation in the EU – between precaution and proportionality

The article analyzes current developments in European pesticide regulation.

Identification of cis-2-methyl-4-propyl-1,3-oxathiane as a new volatile sulfur compound (VSC) in wine

Despite their trace concentrations, volatile sulfur compounds (VSCs) are an important category of flavour-active compounds that significantly contribute to desirable or undesirable aromas of many foods and beverages. In wines, VSCs in the form of polyfunctional thiols, notably 3-sulfanylhexan-1-ol (3-SH), 3-sulfanylhexyl acetate (3-SHA), and 4-sulfanyl-4-methyl-pentan-2-one (4-MSP), possess extremely low olfactory thresholds (≈ ng/L) and pleasant “tropical aroma” notes. They have received much attention with respect to their sensory contributions, quantitative occurrences, biogenesis, and thiol management through viticulture and winemaking. However, the fate of these potent volatiles are still not fully understood.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Effects of graft quality on growth and grapevine-water relations

Climate change is challenging viticulture worldwide compromising its sustainability due to warmer temperatures and the increased frequency of extreme events. Grafting Vitis vinifera L.