WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

Abstract

The actual demand by consumers for safer and healthier food and beverage is pushing the wine sector to find alternative methods to avoid the use of sulphur dioxide in winemaking. Ozone is already used in the wine industry to produce sulphur dioxide-free wines through the patented method Purovino®. This study aims to evaluate the effects of ozone treatment used for Purovino® method on grapes berry metabolism and wine quality. Harvested wine grapes (Vitis vinifera L. cv Sangiovese) were fumigated overnight with gaseous ozone. After the treatment grapes were processed to make wine. The technological parameters, volatiles and expression of genes involved in polyphenols and volatile biosynthesis have been analysed in grapes. The aromatic and phenolic profile of the resulting wine has also been assessed. In grapes, ozone treatments increase polyphenols and total flavonoids and consistently specific genes involved in polyphenol biosynthesis were up-regulated. In the resulting wine ozone fumigation increase flavonols content. Additionally, ozone exposition slightly affects the aromatic profile of grapes and wine, mainly due to changes in aroma compounds derived from the lipoxygenase pathway. Overall, the results show that post-harvest ozone treatments applied to avoid the use of sulphur dioxide induce limited but, in general, positive changes in grape and wine. This information could be of great interest for wine makers that, when using ozone treatments are guaranteed in terms of maintenance of quality and typical traits of wines.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Margherita Modesti, Stefano, Brizzolara, Roberto, Forniti, Brunella, Ceccantoni, Andrea, Bellincontro, Andrea, Bellincontro, Fabio, Mencarelli, Pietro, Tonutti, Cesare, Catelli

Presenting author

Margherita Modesti – Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy

Institute of Life Sciences, School of Advanced studies Sant’Anna, Piazza Martiri della Libertà, 33 56127 PISA, ITALY, Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy, P.C. di Pompeo Catelli S.R.L., Via Roma 81, Uggiate Trevano, 22029 Como, Italy, Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy Institute of Life Sciences

Contact the author

Keywords

Ozone, Purovino, sulphur dioxide free wine, flavonoids, flavonols

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Pierce’s disease of grapevines, a new threat to the wine industry in Southern Europe

Pierce’s disease (PD) is considered a potential threat to european viticulture (EPPO a2 list of pathogens since 1981). In the usa, infections caused by the vector-borne bacterium xylella fastidiosa have caused recurrent damage to vineyards in California and the southeastern states. However, vineyards in Europe have remained free of PD until recently, when it was first detected on the island of Mallorca in 2017. The reasons for the absence of PD in continental Europe have not been convincingly explained.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Sustainable viticulture’ the “semi‐minimal” pruned “hedge” system for grape vines long term experience on cv. Sangiovese (Vitis vinifera L.)

In previous experiments carried out in Bologna on Sangiovese grapevines raised with the Australian “Minimal Pruning” system, it has been shown that this system left an excessive burden of buds on the vine.

The impact of selected odorant combinations in wine oxidative aroma and their interactive role on the olfactory perception

It is widely known the impact that oxidation has on wine sensory degradation and eventually, in the shortening of its longevity.