WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

Abstract

The actual demand by consumers for safer and healthier food and beverage is pushing the wine sector to find alternative methods to avoid the use of sulphur dioxide in winemaking. Ozone is already used in the wine industry to produce sulphur dioxide-free wines through the patented method Purovino®. This study aims to evaluate the effects of ozone treatment used for Purovino® method on grapes berry metabolism and wine quality. Harvested wine grapes (Vitis vinifera L. cv Sangiovese) were fumigated overnight with gaseous ozone. After the treatment grapes were processed to make wine. The technological parameters, volatiles and expression of genes involved in polyphenols and volatile biosynthesis have been analysed in grapes. The aromatic and phenolic profile of the resulting wine has also been assessed. In grapes, ozone treatments increase polyphenols and total flavonoids and consistently specific genes involved in polyphenol biosynthesis were up-regulated. In the resulting wine ozone fumigation increase flavonols content. Additionally, ozone exposition slightly affects the aromatic profile of grapes and wine, mainly due to changes in aroma compounds derived from the lipoxygenase pathway. Overall, the results show that post-harvest ozone treatments applied to avoid the use of sulphur dioxide induce limited but, in general, positive changes in grape and wine. This information could be of great interest for wine makers that, when using ozone treatments are guaranteed in terms of maintenance of quality and typical traits of wines.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Margherita Modesti, Stefano, Brizzolara, Roberto, Forniti, Brunella, Ceccantoni, Andrea, Bellincontro, Andrea, Bellincontro, Fabio, Mencarelli, Pietro, Tonutti, Cesare, Catelli

Presenting author

Margherita Modesti – Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy

Institute of Life Sciences, School of Advanced studies Sant’Anna, Piazza Martiri della Libertà, 33 56127 PISA, ITALY, Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy, P.C. di Pompeo Catelli S.R.L., Via Roma 81, Uggiate Trevano, 22029 Como, Italy, Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy Institute of Life Sciences

Contact the author

Keywords

Ozone, Purovino, sulphur dioxide free wine, flavonoids, flavonols

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

This work aimed to evaluate the evolution of phenolic compounds during white winemaking process up to bottling and 12 months storage, together with the influence of different antioxidant strategies

Stabilità dei caratteri fenotipici dl alcune cv in diversi pedopaesaggi friulani. Applicazione del metodo nella caratterizzazione viticola del comprensorio DOC “Friuli-Grave”

This communication was estracted from a study concerning the viticultural characterization of A.V.A. “Friuli-Grave” area sponsored by Chamber of Commerce of Pordenone.

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity.

Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA).

Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes:

1. A direct or indirect action on primary varietal aroma and on its evolution during wine
aging.

2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation
during anoxic aging.

3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms:

1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans.

Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors

Outils de caracterisation et zonage des paysages viticoles: application aux vignobles français

Un paysage viticole est une relation entre des formes, dimension objective, et la perception que nous en avons, dimension subjective, émotionnelle. La viticulture n’est pas seulement productrice d’un vin, elle contribue également à façonner le paysage. Pourtant, jusqu’à présent, la connaissance des terroirs était principalement basée sur la caractérisation de leur aptitude à produire des vins de qualité.

Expanding the biotechnological potential of M. pulcherrima/fructicola clade for wine-related applications

AIM: Strains belonging to M. pulcherrima/fructicola clade are frequently isolated from flowers, fruits and grape musts, and exhibit a broad spectrum of enzymatic activities and antimicrobial potential (Morata et al., 2019; Sipiczki, 2020; Vicente et al. 2020).