WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Abstract

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as possible labile varietal aroma compounds, such as polyfunctional mercaptans (PFM). The goal of the present work is to assess the specific role played by grape polyphenols on these abilities. For that, polyphenolic fractions extracted from Garnacha, Tempranillo, and Moristel grapes were reconstituted to form model wines of identical pH, ethanol, amino acid, metal, and varietal PFMs contents. Models were subjected to a forced oxidation procedure at 35 °C (50 mg O2L−1 for 35 days) and to an equivalent treatment under strict anoxia. Chemical characterization of polyphenolic fractions and oxidized and unoxidized (controls) wine models was carried out. In general, oxidation causes increases in redox potential, tannin activity, and in the levels of SAs. Similarly, oxidation causes decreases of great magnitude in free and total PFMs and of moderate magnitude in total polyphenol index, pigmented tannins, and in TDN. Polyphenolic profiles significantly determined oxygen consumption rates (5.6−13.6 mg L−1 day−1), SAs accumulation (ratios max/min around 2.5), and levels of PFMs remaining (ratio max/min between 1.93 and 4.53). By contrast, acetaldehyde accumulated in small amounts and homogeneously (11−15 mg L−1). The accumulation of SAs is positively and significantly correlated to the content on phenolic acids, monomeric flavanols, and nonpigmented tannins and negatively correlated to the contents in prodelphinidins, anthocyanins, and color. Overall, SAs accumulation may be related to polyphenols, producing stable quinones. Tempranillo samples, with highest delphinidin and prodelphinidins and smallest catechin, consume O2 faster but accumulate less SA and retain smallest amounts of PFMs under anoxic conditions. The ability to protect PFMs as disulfides may be negatively related to the increase in tannin activity, while pigmented tannins could be related to 4-methyl-4-mercaptopentanone decrease. The varietal polyphenolic profile exerted a deep effect on the generation of Strecker aldehydes and on the instability of polyfunctional mercaptans, and hence, on the longevity of wine aroma.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Elena, Bueno-Aventín, Vicente, Ferreira, Ana, Escudero, Fernández-Zurbano

Presenting author

Elena, Bueno-Aventín – Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza

Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza | Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza, Purificación | Instituto de Ciencias de la Vid y del Vino (ICVV), Universidad de La Rioja

Contact the author

Keywords

Aromas-Quinones-Aging-Strecker Aldehydes-Polyfunctional Mercaptan

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Grape stems as preservative in Tempranillo wine

SO2 is the most widely used preservative in the wine industry. However, there are several drawbacks related with the use of SO2 in wine such as its toxicity and the unpleasant odor in case of excess.

Gamma-ray spectrometry In Burgundy vineyard for high resolution soil mapping

Aim: A soil mapping methodology based on gamma-ray spectrometry and soil sampling has been applied for the first time in Burgundy. The purpose of this innovative high-resolution mapping is to delimit soil areas, to define elementary units of soil for terroir characterization and vineyard management. The added value of this integrated approach is a continuous geophysical mapping of the soil with an investigation depth of 60cm.

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

Early likovrisi: the new white very early table grape seedless and resistant variety

This paper presents is the create, the study and ampelographic description the new «Early Likovrisi», that was created (2014) in Greece by Pantelis Zamanidis.

Investigating water stress-related seasonal and spatial patterns and the possible links with juice and wine compositional parameters

The mapping of spatial variability in vineyards offers the potential to implement zonal management strategies with the aim to optimize economic benefits and increase sustainability by managing natural resources, such as water used for irrigation, more optimally. This study characterized the (natural) variability in plant water status in a commercial Cabernet Sauvignon block, using remote sensing techniques, and identified the impact of this variability on the yield, and juice and wine composition. From the field data collected over two growing seasons, we demonstrated that remote sensing techniques are a practical and powerful tool for mapping spatial variability within vineyard blocks.