WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Abstract

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as possible labile varietal aroma compounds, such as polyfunctional mercaptans (PFM). The goal of the present work is to assess the specific role played by grape polyphenols on these abilities. For that, polyphenolic fractions extracted from Garnacha, Tempranillo, and Moristel grapes were reconstituted to form model wines of identical pH, ethanol, amino acid, metal, and varietal PFMs contents. Models were subjected to a forced oxidation procedure at 35 °C (50 mg O2L−1 for 35 days) and to an equivalent treatment under strict anoxia. Chemical characterization of polyphenolic fractions and oxidized and unoxidized (controls) wine models was carried out. In general, oxidation causes increases in redox potential, tannin activity, and in the levels of SAs. Similarly, oxidation causes decreases of great magnitude in free and total PFMs and of moderate magnitude in total polyphenol index, pigmented tannins, and in TDN. Polyphenolic profiles significantly determined oxygen consumption rates (5.6−13.6 mg L−1 day−1), SAs accumulation (ratios max/min around 2.5), and levels of PFMs remaining (ratio max/min between 1.93 and 4.53). By contrast, acetaldehyde accumulated in small amounts and homogeneously (11−15 mg L−1). The accumulation of SAs is positively and significantly correlated to the content on phenolic acids, monomeric flavanols, and nonpigmented tannins and negatively correlated to the contents in prodelphinidins, anthocyanins, and color. Overall, SAs accumulation may be related to polyphenols, producing stable quinones. Tempranillo samples, with highest delphinidin and prodelphinidins and smallest catechin, consume O2 faster but accumulate less SA and retain smallest amounts of PFMs under anoxic conditions. The ability to protect PFMs as disulfides may be negatively related to the increase in tannin activity, while pigmented tannins could be related to 4-methyl-4-mercaptopentanone decrease. The varietal polyphenolic profile exerted a deep effect on the generation of Strecker aldehydes and on the instability of polyfunctional mercaptans, and hence, on the longevity of wine aroma.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Elena, Bueno-Aventín, Vicente, Ferreira, Ana, Escudero, Fernández-Zurbano

Presenting author

Elena, Bueno-Aventín – Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza

Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza | Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza, Purificación | Instituto de Ciencias de la Vid y del Vino (ICVV), Universidad de La Rioja

Contact the author

Keywords

Aromas-Quinones-Aging-Strecker Aldehydes-Polyfunctional Mercaptan

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines.

Does foliar fertilization with Seaweed improve the productivity and quality of ‘Merlot’ grape must?

Developing technologies that help vines survive and produce in quantity and quality within current times is mandatory. In this sense, in the 2021/2022 agricultural harvest, the influence of the foliar application of seaweed – Laminaria japonica was studied, aiming at productivity and quality of the must in the ‘Merlot’ grape. In the city of “Santana do Livramento”, “Rio Grande do Sul” (RS), Brazil; in a 15-year-old commercial vineyard of ‘Merlot’ clone ENTAV-INRA® 347, grafted onto ‘SO4’ rootstock, the following treatments were applied on 6 occasions: No treatment (control) and; Foliar application of Laminaria japonica seaweed (commercial product: Exal (ALAS), 2 kg ha-1).

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1, was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants.

Field performance of red and white “pilzwiderstandsfähige” (PIWI) cultivars in the south of Uruguay

As knowledge about the oenological potential of disease-tolerant grape varieties (PIWI) continues to grow and consumer demand for product safety and sustainable production increases, more governments worldwide are permitting the cultivation of these varieties [1].

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.