WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Abstract

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as possible labile varietal aroma compounds, such as polyfunctional mercaptans (PFM). The goal of the present work is to assess the specific role played by grape polyphenols on these abilities. For that, polyphenolic fractions extracted from Garnacha, Tempranillo, and Moristel grapes were reconstituted to form model wines of identical pH, ethanol, amino acid, metal, and varietal PFMs contents. Models were subjected to a forced oxidation procedure at 35 °C (50 mg O2L−1 for 35 days) and to an equivalent treatment under strict anoxia. Chemical characterization of polyphenolic fractions and oxidized and unoxidized (controls) wine models was carried out. In general, oxidation causes increases in redox potential, tannin activity, and in the levels of SAs. Similarly, oxidation causes decreases of great magnitude in free and total PFMs and of moderate magnitude in total polyphenol index, pigmented tannins, and in TDN. Polyphenolic profiles significantly determined oxygen consumption rates (5.6−13.6 mg L−1 day−1), SAs accumulation (ratios max/min around 2.5), and levels of PFMs remaining (ratio max/min between 1.93 and 4.53). By contrast, acetaldehyde accumulated in small amounts and homogeneously (11−15 mg L−1). The accumulation of SAs is positively and significantly correlated to the content on phenolic acids, monomeric flavanols, and nonpigmented tannins and negatively correlated to the contents in prodelphinidins, anthocyanins, and color. Overall, SAs accumulation may be related to polyphenols, producing stable quinones. Tempranillo samples, with highest delphinidin and prodelphinidins and smallest catechin, consume O2 faster but accumulate less SA and retain smallest amounts of PFMs under anoxic conditions. The ability to protect PFMs as disulfides may be negatively related to the increase in tannin activity, while pigmented tannins could be related to 4-methyl-4-mercaptopentanone decrease. The varietal polyphenolic profile exerted a deep effect on the generation of Strecker aldehydes and on the instability of polyfunctional mercaptans, and hence, on the longevity of wine aroma.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Elena, Bueno-Aventín, Vicente, Ferreira, Ana, Escudero, Fernández-Zurbano

Presenting author

Elena, Bueno-Aventín – Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza

Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza | Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza, Purificación | Instituto de Ciencias de la Vid y del Vino (ICVV), Universidad de La Rioja

Contact the author

Keywords

Aromas-Quinones-Aging-Strecker Aldehydes-Polyfunctional Mercaptan

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Effects of water and nitrogen uptake, and soil temperature, on vine development, berry ripening and wine quality of Cabernet-Sauvignon, Cabernet franc and Merlot (Saint-Emilion, 1997)

Wine quality depends largely on berry ripening conditions in relation to soil and climat. The influence of the soil has been studied in Bordeaux since the early Seventies (SEGUIN, 1970; DUTEAU et al., 1981; VAN LEEUWEN, 1991; VAN LEEUWEN et SEGUIN, 1994) and, more recently, in the Val de Loire (MORLAT, 1989), the Alsace (LEBON, 1993) and the Costières de Nîmes regions (MARTIN, 1995).

Nematode vectors, grape fanleaf virus (GFLV) incidence and free virus vine plants obtaining in “Condado de Huelva” vineyards zone

The « Condado de Huelva » Registered Appellation Origin Mark (RAOM) is located in the Province of Huelva, in the southwest of Andalucía (Spain), being limited by the Atlantic Ocean and the Province of Sevilla. « Zalema », a white high productive grapevine plant is its major cultivar. The predominant rootstocks used are « Rupestris du Lot », « Castel 196-17 », « Couderc 161-49 », Couderc 33-09 », « Richter 110 » and « Millardet 41-B ». Traditionally, « Zalema » cv. has been dedicated to the elaboration of amber, bouquet-flavoured wines and in the last years mainly to young, fruit-flavoured white table wines.

Effect of nitrogen content on fermentation kinetics and aroma profile of assyrtiko wine

Today, there is need to design, produce and label terroir wines, with unique organoleptic properties and more “attractive to consumers”. For this purpose, two Saccharomyces cerevisiae yeast strains (Sa and Sb) isolated during spontaneous fermentations were used for white wine production from the Assyrtiko grape of Santorini. A third commercial strain was used as control.

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).