WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Abstract

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as possible labile varietal aroma compounds, such as polyfunctional mercaptans (PFM). The goal of the present work is to assess the specific role played by grape polyphenols on these abilities. For that, polyphenolic fractions extracted from Garnacha, Tempranillo, and Moristel grapes were reconstituted to form model wines of identical pH, ethanol, amino acid, metal, and varietal PFMs contents. Models were subjected to a forced oxidation procedure at 35 °C (50 mg O2L−1 for 35 days) and to an equivalent treatment under strict anoxia. Chemical characterization of polyphenolic fractions and oxidized and unoxidized (controls) wine models was carried out. In general, oxidation causes increases in redox potential, tannin activity, and in the levels of SAs. Similarly, oxidation causes decreases of great magnitude in free and total PFMs and of moderate magnitude in total polyphenol index, pigmented tannins, and in TDN. Polyphenolic profiles significantly determined oxygen consumption rates (5.6−13.6 mg L−1 day−1), SAs accumulation (ratios max/min around 2.5), and levels of PFMs remaining (ratio max/min between 1.93 and 4.53). By contrast, acetaldehyde accumulated in small amounts and homogeneously (11−15 mg L−1). The accumulation of SAs is positively and significantly correlated to the content on phenolic acids, monomeric flavanols, and nonpigmented tannins and negatively correlated to the contents in prodelphinidins, anthocyanins, and color. Overall, SAs accumulation may be related to polyphenols, producing stable quinones. Tempranillo samples, with highest delphinidin and prodelphinidins and smallest catechin, consume O2 faster but accumulate less SA and retain smallest amounts of PFMs under anoxic conditions. The ability to protect PFMs as disulfides may be negatively related to the increase in tannin activity, while pigmented tannins could be related to 4-methyl-4-mercaptopentanone decrease. The varietal polyphenolic profile exerted a deep effect on the generation of Strecker aldehydes and on the instability of polyfunctional mercaptans, and hence, on the longevity of wine aroma.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Elena, Bueno-Aventín, Vicente, Ferreira, Ana, Escudero, Fernández-Zurbano

Presenting author

Elena, Bueno-Aventín – Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza

Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza | Laboratorio de Análisis del Aroma y Enología (LAAE), Universidad de Zaragoza, Purificación | Instituto de Ciencias de la Vid y del Vino (ICVV), Universidad de La Rioja

Contact the author

Keywords

Aromas-Quinones-Aging-Strecker Aldehydes-Polyfunctional Mercaptan

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

The Precision Viticulture (PV) is defined “as a management system that is information and technology based, is site specific and uses one or more of the following sources of data: soils, vigour, nutrients, pests, moisture, and yield among others, for optimum profitability, sustainability, and protection of the environment” (OIV, 2018, in process). The elements mentioned in the definition are an important part of the terroir components. The terroir is a tool In Viticulture, it is the analysis and study unit, and the variability of a certain situation can be due to any difference in every element or property of each factor that constitutes it, including the management.The soil and its management are those that bring the most variability to terroir.

Hormone metabolism regulates fruit maturation in a slow ripening grape genotype

Context and purpose of the study. Rising temperatures and prolonged heat accelerate berry sugar accumulation in advance of the accumulation of compounds responsible for aroma, colour and mouthfeel.

Produce wines with no quantifiable phytosanitary residues – Impact of washing grapes?

Consumer expectations are increasingly shifting towards “residue-free wines.” However, from an analytical standpoint, “zero” does not exist. Laboratories often use the quantification limits of analysis methods to signify ‘zero.’ Improved techniques now allow for the quantification of levels that were previously undetectable. This is why we prefer to use the term “unquantifiable residue” rather than “absence of residues.”

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]

Shading nets for the adaptation to climate change: effect on vine physiology and grape quality 

Viticulture is threatened by the environmental modification caused by climate change. Higher temperatures determine an acceleration of the ripening process, which can be detrimental to wine quality. In the mediterranean area, heat waves are also increasingly frequent, with consequent blocking of the vegetative activity of the vines and increased susceptibility to sunburn damage. thus, adaptation strategies are necessary to reduce stress and improve the quality of grape production. Amongst the various techniques available, shading nets represent an interesting alternative for their effects on canopy microclimate (i.e., reduction of photosynthetic activity, improvement of water use efficiency, and slowing down in the ripening process).