WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Oxygen transfer through cork stoppers

Oxygen transfer through cork stoppers

Abstract

During wine conservation in a bottle, the control of oxygen transfer from the outside environment to the wine inside the bottle is a key parameter that determines the wine quality. Many other factors can also influence the evolution of wine during postbottling aging, such as the composition of the wine itself, the temperature, the relative humidity, the storage position, as well as the amount of oxygen initially present in the bottle. However, the oxygen transfer is the most critical factor. For this reason, the choice of the packaging and in particular of the stopper is crucial in providing the best conditions for wine aging. 

With the various types cork-based stopper currently used, an additional outer layer of a surface treatment product is always applied in the final step of the manufacturing process. The primary function of these surface treatments is to facilitate the introduction and above all the extraction of the stopper from the bottleneck, as they reduce the adhesion between the glass and the cork acting as a slippery agent. However, only a few studies have reported the effect of the coating agents on the transfer of oxygen through the cork-bottleneck system. 

A comprehensive study was carried out to investigate the critical role played by the interface between the stopper and the bottleneck on oxygen penetration into the bottle, as well as the effect of the surface treatment of the stopper. This was performed starting from the diffusion through the stopper alone and ending with a more complex system comprising the stopper covered by a surface treatment agent and compressed in the glass bottleneck. 

First, the compression of micro-agglomerated cork, at close to 40%, had a limited effect on the oxygen transfer, with a decrease of the oxygen diffusion by a factor of 1.5. 

Second, once a cork was inserted into a glass bottleneck without any surface treatment, up to 99% of the total oxygen transfer took place at the stopper-bottleneck interface. Third, when the cork surface was coated with a paraffin-silicone mixture, there was almost no oxygen transfer at the interface. A coating with a thickness of less than 1 µm thus provided an efficient barrier for the stopper-bottleneck interface system to act against gas transfer at the interface. In addition to its initial role of ensuring easier uncorking, the surface coating therefore confers an additional and unexpected barrier efficiency to the wine sealing system.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Julie Chanut, Jean-Pierre Bellat, Régis D. Gougeon, Thomas Karbowiak

Presenting author

Julie Chanut – Agrosup Dijon, UMR PAM

Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS | Agrosup Dijon, UMR PAM, Institut Universitaire de la Vigne et du Vin | Agrosup Dijon, UMR PAM

Contact the author

Keywords

gas transfer, oxygen, agglomerated cork, interface, surface treatment

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Soluble solids and firmness responses of a very slow ripening mutant to ripening acceleration treatments

Wine grapes have the ability to accumulate high amounts of hexoses (glucose and fructose), which is considered one of the main processes occurring during the ripening stage. Sugar accumulation dynamics respond to genetic, environmental and vineyard management factors, with a changing climate leading to advanced and faster sugar accumulation worldwide. Research on mitigation techniques to this phenomenon is ongoing, with the largest focus being vineyard techniques to delay sugar accumulation. Breeding represents another powerful tool to address the issue of high sugar concentration at harvest, since historical trends of selecting best sugar-accumulators may be inverted to breed varieties that accumulate diminished concentrations of hexoses while maintaining optimal acidity, color, mouthfeel and aroma compounds.

Determinazione della frazione aromatica dei vini, quale strumento per-la valorizzazione del territorio viticolo

La caratterizzazione della frazione volatile aromatica dei vini attraverso l’analisi quali­quantitativa dei diversi composti, ha portato corne primo risultato la netta differenziazione delle annate in prova.

An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

Aim: Pinot Blanc is the third most planted white wine grape in northern Italy’s region of South Tyrol, where small-scale viticultural production permits the examination of the wine’s diverse expressive potential in a small area across a wide range of climatic variables. This study aimed to explore the qualitative potential of Pinot Blanc across a range of climatic variation leading to site-specific terroir expression in a cool climate region.

Effect of kaolin foliar application on grape cultivar Assyrtiko (Vitis vinifera L.) under vineyard conditions

In the context of climate change and for the sustainable exploitation of Mediterranean vineyards, it is necessary to use new strategies to adapt to the new climatic conditions.

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.