WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Oxygen transfer through cork stoppers

Oxygen transfer through cork stoppers

Abstract

During wine conservation in a bottle, the control of oxygen transfer from the outside environment to the wine inside the bottle is a key parameter that determines the wine quality. Many other factors can also influence the evolution of wine during postbottling aging, such as the composition of the wine itself, the temperature, the relative humidity, the storage position, as well as the amount of oxygen initially present in the bottle. However, the oxygen transfer is the most critical factor. For this reason, the choice of the packaging and in particular of the stopper is crucial in providing the best conditions for wine aging. 

With the various types cork-based stopper currently used, an additional outer layer of a surface treatment product is always applied in the final step of the manufacturing process. The primary function of these surface treatments is to facilitate the introduction and above all the extraction of the stopper from the bottleneck, as they reduce the adhesion between the glass and the cork acting as a slippery agent. However, only a few studies have reported the effect of the coating agents on the transfer of oxygen through the cork-bottleneck system. 

A comprehensive study was carried out to investigate the critical role played by the interface between the stopper and the bottleneck on oxygen penetration into the bottle, as well as the effect of the surface treatment of the stopper. This was performed starting from the diffusion through the stopper alone and ending with a more complex system comprising the stopper covered by a surface treatment agent and compressed in the glass bottleneck. 

First, the compression of micro-agglomerated cork, at close to 40%, had a limited effect on the oxygen transfer, with a decrease of the oxygen diffusion by a factor of 1.5. 

Second, once a cork was inserted into a glass bottleneck without any surface treatment, up to 99% of the total oxygen transfer took place at the stopper-bottleneck interface. Third, when the cork surface was coated with a paraffin-silicone mixture, there was almost no oxygen transfer at the interface. A coating with a thickness of less than 1 µm thus provided an efficient barrier for the stopper-bottleneck interface system to act against gas transfer at the interface. In addition to its initial role of ensuring easier uncorking, the surface coating therefore confers an additional and unexpected barrier efficiency to the wine sealing system.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Julie Chanut, Jean-Pierre Bellat, Régis D. Gougeon, Thomas Karbowiak

Presenting author

Julie Chanut – Agrosup Dijon, UMR PAM

Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS | Agrosup Dijon, UMR PAM, Institut Universitaire de la Vigne et du Vin | Agrosup Dijon, UMR PAM

Contact the author

Keywords

gas transfer, oxygen, agglomerated cork, interface, surface treatment

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

First results obtained with a terrain model to characterize the viticultural «terroirs» in Anjou (France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation.

Effects of soil and climate on wine style in the Breede River Valley of South Africa: Sauvignon blanc and Cabernet-Sauvignon

Les effets du sol et du climat sur le style de vin ont été évalués pour des vignes irriguées à deux endroits différents de la vallée de la Breede, en Afrique du Sud. L’un des 2 endroits est cependant plus froid que l’autre, principalement en raison de températures nocturnes plus basses.

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

Conduite en Lys: résultats pendant la formation du système avec le cépage Loureiro dans la région des “Vinhos Verdes”

Dans la région des “Vinhos Verdes” les études sur les systèmes de conduite de la vigne sont très importantes et beaucoup de travaux ont été faits pendant les dernières années. Cet essai