WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Oxygen transfer through cork stoppers

Oxygen transfer through cork stoppers

Abstract

During wine conservation in a bottle, the control of oxygen transfer from the outside environment to the wine inside the bottle is a key parameter that determines the wine quality. Many other factors can also influence the evolution of wine during postbottling aging, such as the composition of the wine itself, the temperature, the relative humidity, the storage position, as well as the amount of oxygen initially present in the bottle. However, the oxygen transfer is the most critical factor. For this reason, the choice of the packaging and in particular of the stopper is crucial in providing the best conditions for wine aging. 

With the various types cork-based stopper currently used, an additional outer layer of a surface treatment product is always applied in the final step of the manufacturing process. The primary function of these surface treatments is to facilitate the introduction and above all the extraction of the stopper from the bottleneck, as they reduce the adhesion between the glass and the cork acting as a slippery agent. However, only a few studies have reported the effect of the coating agents on the transfer of oxygen through the cork-bottleneck system. 

A comprehensive study was carried out to investigate the critical role played by the interface between the stopper and the bottleneck on oxygen penetration into the bottle, as well as the effect of the surface treatment of the stopper. This was performed starting from the diffusion through the stopper alone and ending with a more complex system comprising the stopper covered by a surface treatment agent and compressed in the glass bottleneck. 

First, the compression of micro-agglomerated cork, at close to 40%, had a limited effect on the oxygen transfer, with a decrease of the oxygen diffusion by a factor of 1.5. 

Second, once a cork was inserted into a glass bottleneck without any surface treatment, up to 99% of the total oxygen transfer took place at the stopper-bottleneck interface. Third, when the cork surface was coated with a paraffin-silicone mixture, there was almost no oxygen transfer at the interface. A coating with a thickness of less than 1 µm thus provided an efficient barrier for the stopper-bottleneck interface system to act against gas transfer at the interface. In addition to its initial role of ensuring easier uncorking, the surface coating therefore confers an additional and unexpected barrier efficiency to the wine sealing system.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Julie Chanut, Jean-Pierre Bellat, Régis D. Gougeon, Thomas Karbowiak

Presenting author

Julie Chanut – Agrosup Dijon, UMR PAM

Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS | Agrosup Dijon, UMR PAM, Institut Universitaire de la Vigne et du Vin | Agrosup Dijon, UMR PAM

Contact the author

Keywords

gas transfer, oxygen, agglomerated cork, interface, surface treatment

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Variabilité des critères de délimitation dans les AOC françaises

La délimitation de l’aire de production d’une appellation d’origine contrôlée française est une opération essentielle. Le décret-loi du 30 juillet 1935, qui a créé le système des appellations d’origine contrôlées

Application of organic carbon status indicators on vineyard soils: the case study of DOC Piave (Veneto region, Italy)

According to the Kyoto Protocol objectives, it’s necessary to identify alternative carbon dioxide sinks, and vineyard soils could be a significant opportunity.

Vineyard microclimate alterations induced by black mulch through transcriptome reshaped the flavoromics of Cabernet Sauvignon

To alter the vineyard microclimate and produce quality wine under a semi-arid climate, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017). The grapes were sampled at three growing stages to conduct the untargeted metabolome and transcriptome analysis. The upregulated genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered severe heat stress, resulting in lower sugar and higher acids at harvest. The integration of metabolome and transcriptome analysis identified the key genes responsible for the enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes and norisoprenoids concentrations in M grapes.

An evaluation of the physiological responses of young grapevines planted and maintained under water constraint 

The aim of this ongoing study is to evaluate the degree of adaptability of grapevine scion:rootstock combinations to different conditions of water constraint. Here we present results from the young vine development phase, using three scenarios of water constraint that were implemented from planting. The experimental vineyard was established in 2020 and the data presented will cover the 2021/2022 and 2022/2023 seasons. The experiment consisted of the cultivars Pinotage (PIN), Shiraz (SHI) and Cabernet Sauvignon (CAB), grafted on two rootstocks, Richter 110 (R110) and USVIT-8-7 (US87).

Viticultural practices: past, present and future

Practices in viticulture have greatly evolved in the last five decades. There were three objectives: improvement in the quality of the products, reduction in the production costs through mechanization