WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Oxygen transfer through cork stoppers

Oxygen transfer through cork stoppers

Abstract

During wine conservation in a bottle, the control of oxygen transfer from the outside environment to the wine inside the bottle is a key parameter that determines the wine quality. Many other factors can also influence the evolution of wine during postbottling aging, such as the composition of the wine itself, the temperature, the relative humidity, the storage position, as well as the amount of oxygen initially present in the bottle. However, the oxygen transfer is the most critical factor. For this reason, the choice of the packaging and in particular of the stopper is crucial in providing the best conditions for wine aging. 

With the various types cork-based stopper currently used, an additional outer layer of a surface treatment product is always applied in the final step of the manufacturing process. The primary function of these surface treatments is to facilitate the introduction and above all the extraction of the stopper from the bottleneck, as they reduce the adhesion between the glass and the cork acting as a slippery agent. However, only a few studies have reported the effect of the coating agents on the transfer of oxygen through the cork-bottleneck system. 

A comprehensive study was carried out to investigate the critical role played by the interface between the stopper and the bottleneck on oxygen penetration into the bottle, as well as the effect of the surface treatment of the stopper. This was performed starting from the diffusion through the stopper alone and ending with a more complex system comprising the stopper covered by a surface treatment agent and compressed in the glass bottleneck. 

First, the compression of micro-agglomerated cork, at close to 40%, had a limited effect on the oxygen transfer, with a decrease of the oxygen diffusion by a factor of 1.5. 

Second, once a cork was inserted into a glass bottleneck without any surface treatment, up to 99% of the total oxygen transfer took place at the stopper-bottleneck interface. Third, when the cork surface was coated with a paraffin-silicone mixture, there was almost no oxygen transfer at the interface. A coating with a thickness of less than 1 µm thus provided an efficient barrier for the stopper-bottleneck interface system to act against gas transfer at the interface. In addition to its initial role of ensuring easier uncorking, the surface coating therefore confers an additional and unexpected barrier efficiency to the wine sealing system.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Julie Chanut, Jean-Pierre Bellat, Régis D. Gougeon, Thomas Karbowiak

Presenting author

Julie Chanut – Agrosup Dijon, UMR PAM

Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS | Agrosup Dijon, UMR PAM, Institut Universitaire de la Vigne et du Vin | Agrosup Dijon, UMR PAM

Contact the author

Keywords

gas transfer, oxygen, agglomerated cork, interface, surface treatment

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Outline for the définition of “Terroirs Viticoles application to the area of El AIjarafe (Seville, Spain)

The grapes producing and wine making regions are différent in their use of agricultural, industrial or agroindustrial means. These means are quite often very original and/or specialised; and lately are also quite competitive. Such means are being defined with increased accuracy in the delimitation and definition of its characteristics (Paneque et al., 1996 a). Human action together with other Elements and Agents involved in the vine growing production (Reyner, 1989) over these means lead to agronomic systems with important characteristics. Finally, the transformation of the vine growing production, through different technologies (Fleet, 1992), results in the creation of products with a different acceptance and economical value in the market.

Swiss program for the creation of fungal disease resistant grape varieties in Switzerland

Grapevine breeding is part of the research program of Agroscope in Switzerland since 1965. From 1965 to 1995, the aim of the Vitis vinifera crosses was to obtain a high resistance to grey rot (Botrytis cinerea), one of the most virulent fungal pathogens in the Swiss vineyard. In 2021, the grape varieties released from this first breeding program covered 936 ha of the 15’000 ha of the Swiss vineyard.
In 1996, a second breeding program aimed at obtaining, by classical interspecific hybridization, grape varieties resistant to downy mildew (Plasmopara viticola) and powdery mildew (Erisyphe necator) and less sensitive to grey rot (Botrytis cinerea). In order to accelerate and make the selection process more reliable, an early biochemical test was developed based on the natural defense mechanisms of the vine against downy mildew (stilbene phytoalexins). The synthesis of stilbenes (i.e., resveratrol and its oxidized dimers - and -viniférine) and pterostilbenes (methylated derivative) is among the most efficient induced defense mechanisms of grapevine against fungal pathogens on both the leaves and the clusters.

Subsurface irrigation: a means to reduce chemical and water inputs in vineyards

Grape growers around the world are seeking to reduce their reliance on herbicides. However, traditional alternatives to chemical weed control do not always integrate seamlessly into established vineyard operations. Employing nonchemical weed management often requires trellis alterations, purchasing or hiring new equipment, and depending on region, may significantly increase tractor passes required to reach desired level of weed control. Critical thinking and thoughtful strategies are necessary to minimize expenditures and maintain quality during the transition away from herbicides. In this trial, irrigation was installed underground in an effort to minimize water loss due to evaporation, better direct the water to the vines, and reduce weed growth in the difficult to control undervine area.

From grapevines to extreme environments … and back?

I performed my PhD in grapevine physiology under the supervision of Dr. H. Medrano, standing in the vineyards from pre-dawn to sunrise during many hot, wet and sunny days with my colleagues J.M.E. and J.B. I also spent many days and nights facing ticks year-round working in Mediterranean macchias with J.Gu. and M.M. Later I was able to supervise PhD students on grapevines – like A.P. and M.T. – and on Mediterranean vegetation – like J.Gal. With the incorporation to the group of M.R.-C. ‘the puzzle’ was completed and, combining the aforementioned studies, we could conclude (more than 20 years ago) things like: (1) stomatal conductance is the best proxy for ‘water stress’ in studies on photosynthesis; (2) steady-state chlorophyll fluorescence retrieves photosynthesis under saturating light; (3) photoinhibition is not a major photosynthetic limitation under water stress; (4) mesophyll conductance instead is; and (5) mesophyll conductance is a major driver of leaf water use efficiency.