WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Oxygen transfer through cork stoppers

Oxygen transfer through cork stoppers

Abstract

During wine conservation in a bottle, the control of oxygen transfer from the outside environment to the wine inside the bottle is a key parameter that determines the wine quality. Many other factors can also influence the evolution of wine during postbottling aging, such as the composition of the wine itself, the temperature, the relative humidity, the storage position, as well as the amount of oxygen initially present in the bottle. However, the oxygen transfer is the most critical factor. For this reason, the choice of the packaging and in particular of the stopper is crucial in providing the best conditions for wine aging. 

With the various types cork-based stopper currently used, an additional outer layer of a surface treatment product is always applied in the final step of the manufacturing process. The primary function of these surface treatments is to facilitate the introduction and above all the extraction of the stopper from the bottleneck, as they reduce the adhesion between the glass and the cork acting as a slippery agent. However, only a few studies have reported the effect of the coating agents on the transfer of oxygen through the cork-bottleneck system. 

A comprehensive study was carried out to investigate the critical role played by the interface between the stopper and the bottleneck on oxygen penetration into the bottle, as well as the effect of the surface treatment of the stopper. This was performed starting from the diffusion through the stopper alone and ending with a more complex system comprising the stopper covered by a surface treatment agent and compressed in the glass bottleneck. 

First, the compression of micro-agglomerated cork, at close to 40%, had a limited effect on the oxygen transfer, with a decrease of the oxygen diffusion by a factor of 1.5. 

Second, once a cork was inserted into a glass bottleneck without any surface treatment, up to 99% of the total oxygen transfer took place at the stopper-bottleneck interface. Third, when the cork surface was coated with a paraffin-silicone mixture, there was almost no oxygen transfer at the interface. A coating with a thickness of less than 1 µm thus provided an efficient barrier for the stopper-bottleneck interface system to act against gas transfer at the interface. In addition to its initial role of ensuring easier uncorking, the surface coating therefore confers an additional and unexpected barrier efficiency to the wine sealing system.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Julie Chanut, Jean-Pierre Bellat, Régis D. Gougeon, Thomas Karbowiak

Presenting author

Julie Chanut – Agrosup Dijon, UMR PAM

Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS | Agrosup Dijon, UMR PAM, Institut Universitaire de la Vigne et du Vin | Agrosup Dijon, UMR PAM

Contact the author

Keywords

gas transfer, oxygen, agglomerated cork, interface, surface treatment

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Influence of soil management and vine water regime on leaf gas exchange, berry composition and quality of Chasselas wines in Switzerland

A soil management and vine irrigation trial was carried out for 4 consecutive years from 2020 to 2023 at agroscope’s experimental vineyard in leytron (Valais, Switzerland) with the Chasselas grape variety (clone 14-33/4, grafted on 5bb). Two types of soil maintenance (bare soil with chemical weeding and sown grass) coupled with two water regimes (with and without drip irrigation from flowering to veraison) were compared in a randomized design with four replicates of 10 vines each.

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.

Changes in wine secondary metabolites composition by the timing of inoculation with lactic acid bacteria: impact on wine aroma

For the first time, it was established that the timing of inoculation with LAB could significantly impact the concentration of many secondary metabolites leading to significant aromatic changes. From studied compounds, the most influenced were esters and diacetyl.

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon.

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).