IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Hydroxycinnamic acids in grapes and wines made of Tannat, Marselan and Syrah from Uruguay

Hydroxycinnamic acids in grapes and wines made of Tannat, Marselan and Syrah from Uruguay

Abstract

Background: Hydroxycinnamic acids (HCA), present in pulp and skin of grapes, are relevant compounds in red winemaking. They catalyze oxidation reaction, but also participate in the formation of pyranoanthocyanins, thus contributing to the red-wine color stabilization. Aim: the current investigation aimed to study the HCA content and profile in Tannat, Marselan and Syrah Vitis vinifera grapes harvested at different maturation degrees and in the respective wines. A further aim was to study the evolution of these compounds in wine during bottle storage. Material and methods: two vintages were considered, 2015 and 2016. Two harvest dates around technological maturity were evaluated on each grape-cultivar. Winemaking (involving 70kg of grapes each) were made in duplicate by traditional maceration. Skin samples were taken before each vinification, freezed dried, and extracted with a mixture 50:48.5:1.5 of CH3OH/H2O/HCOOH. Hydroxycinnamic acids in skin and in the wines were isolated using SPE PCX cartridges, and injected into an HPLC-ESI-IonTrap-MS/MS system equipped with a C18 column. Wines were analyzed 3 months after winemaking, and during wine storage, up to 24 months after the first analytical determinations. trans-caftaric acid, cis and trans-coutaric acid, trans-fertaric acid, the correspondent free HCA and glucosides of these compounds were identified and quantified. Results: In the skin, caffeic acid-based HCA (Caff.) were the main HCA found (between 60% and 81%). The p-coumaric based HCA (p-coum.) represented the second most important cinnamic acids in 2015 (between 14%-37%) while proportion of Ferulic HCA based compounds (Fer.) represented between 2% and 5%. In 2016, Tannat and Syrah, had a much lower proportion of p-coum. (as low as 5% and 13% respectively), and a much higher proportion of Fer. (21% and 24% respectively), thus, the HCA skin profile could change among vintages. Skin HCA profile also changed among cultivars. Tannat had the highest proportion of Caff. which were much lower in Marselan and particularly in Syrah, and the lowest proportion in p-coum, which reached the highest values in Syrah. Grape ripeness did not modify the skin HCA profile in Syrah and Marselan, but riper grapes of Tannat had higher proportions of p-coum. (increased from 14 to 18%) and lower of Fer. (from 5% to 2%). In wines, Syrah had lower HCA contents (127 mg/l-152 mg/l) than Marselan (252 mg/l-317 mg/l) and Tannat (178 mg/l -328 mg/l). The wines made from the riper grapes had higher HCA contents in Tannat and Syrah, while lower in Marselan. In the 3-month wines, the main HCA was Caff. (more than 70% in all cases), followed by p-coum. (15% in average) and Fer. (between 4%-5%). Syrah wines had lower proportion of Caff. and higher of p-coum. than Marselan and Tannat. During wine storage, p-coum. proportion increased while that of Fer. and particularly Caff. decreased denoting the higher reactivity of the later, consistent with its molecular structure.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Favre Guzmán1, Gómez-Alonso Sergio2, Pérez-Navarro José2, Piccardo Diego1 and González-Neves Gustavo1

1Facultad de Agronomía, Universidad de la República (Udelar)
2Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha

Contact the author

Keywords

Hydroxycinnamic acids, Tannat, Marselan, Syrah

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Yeast cell wall components are valuable biotechnological tools with applications in oenology and beyond [1], [2].

Color stabilization properties of oenological tannins

The use of oenological tannins is authorized for many years by the OIV and advised for color stabilization. For this reason, winemakers look for a better understanding of tannins/anthocyanins interactions to produce deeply colored wines with great color stability during aging.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

Irrigation and terroir: two opposite concepts? Point of view of international experts and french consumers

At long term, qualitative irrigation seems to be the most systematic, if not the best, cultural practice for dealing with climate change and yield increases without decrease grape quality.

IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Hydroxycinnamic acids in grapes and wines made of Tannat, Marselan and Syrah from Uruguay

Hydroxycinnamic acids in grapes and wines made of Tannat, Marselan and Syrah from Uruguay

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: typeofthepublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Use of satellite in precision viticulture: the Franciacorta experience

Today, the concept of precision vine management (or site-specific viticulture) has a great relevance. It is based on the practice of a different management in relation to the different features of the crop site. In this way, all practices should be adapted to the land spatial variability and should be linked to the real needs of vines.

Territorio e vino tra immagine e comunicazione

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

The influence of irrigation and crop load management on berry composition and yield in Chardonnay

Australian grape producers are facing a difficult wine market, therefore a reduction of vineyard production costs is critical.

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.

Spectral features of vine leaves are influenced by their mineral content

The reflectance spectra of vegetation carry potentially useful information that can be used to determine chemical composition and discriminate between vegetation classes. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data.