IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Skin And Seed Extracts Differently Behave Towards Salivary Proteins

Skin And Seed Extracts Differently Behave Towards Salivary Proteins

Abstract

Background: Polyphenols extracted from skins and seeds showed different sensory attributes including astringency and bitterness. In previous studies, it has been demonstrated that extracts obtained either from skins or seeds interact differently with salivary proteins. Red grape winemaking consists of a maceration of the whole berries in which both skins and seeds are mixed together; however, no information on the mutual influence that skins and seeds could have on the reactivity towards saliva of hydroalcoholic extracts is known. In this study, five different  wine model solutions were prepared: the first one contained only skins (Sk), the second one contained only seeds (Sd) and the remaining three contained different skin/seed ratios, as detailed below: A (ratio 2:1 skin : seed), B(ratio 1:1 skin : seed) and C (ratio 1:2 skin: seed).

Methods: HPLC analyses were performed to determine the content of total native anthocyanins, acetaldehyde and polymeric pigments. Iron reactive phenolics, BSA reactive tannins (BSArT), vanillin reactive flavans (VRF) were also determined. The potential astringency of red samples was evaluated in vitro by the Saliva Precipitation index (SPI), which measures the reactivity of salivary proteins towards wine polyphenols.

Results: The results obtained in this experiment highlighted important differences in the behavior of the samples as a function of the different skin:seed ratio. When skins and seeds  were simultaneously present (samples A, B and C), a significant lower content of anthocyanins with respect to Sk was observed. This was likely due to a possible adsorption of pigments on cell walls contained in pomaces. As the amount  of seeds increased in the solutions containing also skins, the content of VRF, BSArT, PP and acetaldehyde linearly increased. After 24 months of aging under controlled conditions, all the trends observed at 0 time were confirmed and appeared to be enhanced. Concerning the interactions toward salivary proteins, as expected, sample Sd showed the highest SPI. Surprisingly, when skins were added to a model solution containing seeds, a decrease of SPI occurred, although VRF and BSArT increased. This suggests that  anthocyanins and polymeric pigments in A, B and C samples determined a lower reactivity of compounds contained in the whole solution towards saliva proteins. SPI values are not correlated to the amount of VRF and BSArT in the samples.

Conclusion:

Results of our study highlighted not only the important role of the skin:seed ratio in regulating the extraction of compounds from berries, but also that of anthocyanins extracted from skins in decreasing the reactivity of grape compounds towards saliva.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Errichiello Francesco1, Guerriero Antonio1, Picariello Luigi1, Coppola Francesca1, Rinaldi Alessandra1,2, Forino Martino1 and Gambuti Angelita1

1Department of Agricultural Sciences, Grape and Wine Science Division, University of Naples Federico II
2Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France

Contact the author

Keywords

skin/seed extract; anthocyanins; polymeric pigments; astringency.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Aging in amphorae with different porosity for sustainable production of Nero d’Avola wine

In recent years, the use of amphorae in winemaking has become more frequent, symbolizing a return to the origins of vinification to broaden the availability of wines with different style.

The antioxidant properties of wine lees extracts in model wine

While the ethanol and tartaric acid contained in wine lees are typically recovered by distilleries, the remaining solid fraction (yeast biomass) is usually disposed of, thus negatively affecting the overall sustainability of the wine industry.

Vignobles sur les pentes en Bourgogne : l’aube d’un nouveau modèle de l’Antiquité au Moyen Âge

La découverte d’une vigne gallo-romaine en plaine à Gevrey-Chambertin (Côte-d’Or) constitue un point important pour la compréhension de la construction des terroirs viticoles de Bourgogne. Sa situation en plaine constitue pour nous le point de départ d’une large réflexion sur la mise en place du modèle de viticulture de coteau qui prévaut en Bourgogne et sur les facteurs de ce changement de norme de qualité viticole. Les sources mobilisées pour cette approche interdisciplinaire et diachronique sont géomorphologiques, archéologiques et textuelles.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

Training vineyards resilience to environmental variations by managing vine water use

The challenges of the century for viticulture relate to coping with climate change and the loss of biodiversity in a downturning socio-economic context. Now more than ever, the vine and wine industry needs to be resilient to maintain and ensure a future for its heritage. An innovation of capital importance, in line with recently published research, deals with developing new methods of training our inherited and newly planted vineyards to better withstand environmental variations such as drought and heatwaves but also unevenly distributed rains and temperatures.

IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Skin And Seed Extracts Differently Behave Towards Salivary Proteins

Skin And Seed Extracts Differently Behave Towards Salivary Proteins

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: typeofthepublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Sorption of aroma compounds by commercial specific yeast derivatives and the influence of polyphenols

Specific inactivated yeast derivatives (SYDs) from S. cerevisiae are obtained through thermal, mechanical, and enzymatic processes and are used to enhance wine quality.

Retallack Viticulture EcoVineyards video

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing.