IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 How to transform the odor of a white wine into a red wine? Color it red!

How to transform the odor of a white wine into a red wine? Color it red!

Abstract

Does a white wine smell like red wine if you color it with red food coloring? A study by Morrot, Brochet, and Dubourdieu (2001, Brain and Language) suggests so. Subjects perceived red wine odors when tasting white wine that had been colored red. The perceived odor profile of the colored white wine became similar to that of a red wine. However, the forced-choice procedure used by Morrot et al. has some methodological shortcomings. Here, we used an alternative method (a rating procedure) to evaluate the presented wines. A white wine (Scheurebe) was presented a) in its original color and b) colored red by odorless food coloring. In addition, c) a red wine (a cuvée of pinot noir and dornfelder) was presented. In order to investigate the cause of the expected shift of the odor ratings for the red-colored white wine into the direction of a red wine profile, the three wines were additionally presented in black glasses, in which the color of the wine was not visible. This provided odor ratings uninfluenced by the color of the wines. We expected these ratings to show that some red wine odors are present in the white wine, but less intensely than in the red wine. As expected, the data showed that red wine odors were perceived more intensely in red-colored white wine than in uncolored white wine, compatible with the results by Morrot et al.The results also support the more general form of the hypothesis that an odor is enhanced by congruent colors and attenuated by incongruent colors. Additionally, the odor ratings of the wines presented in black glasses showed that some red wine aromas were present in the white wine, but less intense than in the red wine. We propose that the results can be understood in terms of attentional focusing. Numerous olfactory components are present in wine, some of them in red wines as well as in white wines. If a white wine is colored red, odors typical for red wine are perceived more intensively than in the uncolored white wine, because the red color directs attention to odor components associated with red wine. Selective attention could thus be an explanation for the influence of color on odor perception.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Twistel Gabriele1, Von Castell Christoph1 and Oberfeld-Twistel Daniel1

1Johannes Gutenberg-Universität Mainz, Department of Psychology

Contact the author

Keywords

sensory analysis, psychology, odor, experiment, color

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Climate change poses several challenges for the wine-industry in the 21st century. Adaptation of viticultural and winemaking practices are therefore essential to preserve wine quality and typicity. Given the complex interactions between physical, biological and human factors at terroir scales, studies conducted at these fine scales allow to better define the local environment and its influences on grapevine growth and berry ripening.

Terroir zoning in appellation campo de borja (northeast Spain): Preliminary results

The components and methodology for characterization of the terroir have been described by Gómez-Miguel & Sotés (1993-2014, 2003) and Gómez-Miguel (2011) taking into account the full range of environmental factors (i.e: climate, lithology, vegetation, topography, soils, altitude, etc.), landscape variables (derived from photo-interpretation and a digital elevation model), and specific variables to the country’s viticulture (i.e: size and distribution of the vineyards, varieties, phenology, productivity, quality, designation regulations, etc.).

Influence of climatic conditions on grape composition of Tempranillo in La Mancha DO (Spain)

The aim of this work was to analyze the variability in grape composition of the Tempranillo cultivar related to climatic conditions, in La Mancha Designation of Origin. Grape composition (sugar content, total acidity, pH, malic acid, and total and extractable anthocyanins) recorded during ripening, were analysed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The relationships between grape parameters with climatic variables related to temperature and to water deficits, referring different periods between phenological events along the growing cycle, were evaluated using regression analysis. High variability in grape composition was observed in the period analysed. Total acidity varied between 3.7 and 7.3 gL-1 while malic acid varied between 1.2 and 4 gL-1. The extractable anthocyanins ranged between 526 and 972 mgL-1, and total anthocyanins ranged between 922 and 1388 mgL-1, being the lowest values recorded in the hottest year (2017). Total acidity decreased 0.77 gL-1 for an increase of 100 GDD, while malic acid decrease in 0.42 gL-1 for the same GDD increase, being the period between veraison and harvest the one that seemed to have higher influence on acidity. In addition, it was confirmed that increasing water deficits decreased acidity. Total and extractable anthocyanins increased in about 210 and 105 mgL-1, respectively, with an increase of 100 GDD from veraison to harvest, and the increase in water deficits favour the increase of anthocyanins, both total and extractable anthocyanins. Total and extractable anthocyanins concentration increased in 35 and 22 mgL-1 per an increase of 10 mm in the water deficit. These results can be of interest to understand the potential changes that grapes composition may suffer under future warmer climates.

Proposal of a procedure for sensory characterisation of wines from different subareas of a same D.O.C. (V.Q.P.R.D.)

In the course of the present work, which is the first part of a study on the “characterization of Barbera dell’Oltrepo Pavese D.O.C.” 30 wines Barbera from 1993 vintage have been compared only regarding their sensory characteristics. An unstructured scale card, composed by 15 descriptors have been used.

Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Nitrogen (N) uptake by grapevine roots in forms like nitrate, ammonium, urea, or amino acids influences vegetative and generative growth, impacting grape quality and wine sensory profile. The study examined nitrogen’s influence on phenolic compounds in leaves, berries, and wine across different scales — hydroponics, soil culture, and vineyard trials. Nitrogen forms altered metabolite patterns in leaves and wine significantly, affecting aroma and flavor. Key nitrogen assimilation enzymes (NR, NiR, GS) in grapevine rootstocks responded to nitrogen forms and timing. Hydroponically grown rootstocks fertilized with various forms showed differences in enzyme expression and activity, suggesting rootstocks can assimilate amino acid glutamine (Gln).