IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 How to transform the odor of a white wine into a red wine? Color it red!

How to transform the odor of a white wine into a red wine? Color it red!

Abstract

Does a white wine smell like red wine if you color it with red food coloring? A study by Morrot, Brochet, and Dubourdieu (2001, Brain and Language) suggests so. Subjects perceived red wine odors when tasting white wine that had been colored red. The perceived odor profile of the colored white wine became similar to that of a red wine. However, the forced-choice procedure used by Morrot et al. has some methodological shortcomings. Here, we used an alternative method (a rating procedure) to evaluate the presented wines. A white wine (Scheurebe) was presented a) in its original color and b) colored red by odorless food coloring. In addition, c) a red wine (a cuvée of pinot noir and dornfelder) was presented. In order to investigate the cause of the expected shift of the odor ratings for the red-colored white wine into the direction of a red wine profile, the three wines were additionally presented in black glasses, in which the color of the wine was not visible. This provided odor ratings uninfluenced by the color of the wines. We expected these ratings to show that some red wine odors are present in the white wine, but less intensely than in the red wine. As expected, the data showed that red wine odors were perceived more intensely in red-colored white wine than in uncolored white wine, compatible with the results by Morrot et al.The results also support the more general form of the hypothesis that an odor is enhanced by congruent colors and attenuated by incongruent colors. Additionally, the odor ratings of the wines presented in black glasses showed that some red wine aromas were present in the white wine, but less intense than in the red wine. We propose that the results can be understood in terms of attentional focusing. Numerous olfactory components are present in wine, some of them in red wines as well as in white wines. If a white wine is colored red, odors typical for red wine are perceived more intensively than in the uncolored white wine, because the red color directs attention to odor components associated with red wine. Selective attention could thus be an explanation for the influence of color on odor perception.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Twistel Gabriele1, Von Castell Christoph1 and Oberfeld-Twistel Daniel1

1Johannes Gutenberg-Universität Mainz, Department of Psychology

Contact the author

Keywords

sensory analysis, psychology, odor, experiment, color

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Riqualificazione dell’antica “Terra di Lavoro” attraverso il rilancio della cultivar Abbuoto

L’agricoltura dei territori costituenti l’antica “Terra di Lavoro”, territorio che oggi è compreso nella provincia di Caserta ed in parte di quelle di Frosinone e Latina, ha subito a partire dal 1970

Caratteristiche fisico-chimiche dei suoli coltivati a vite e loro influenza nella diffusione del mal dell’esca

Il mal dell’esca é una malattia della vite della quale sono state studiate sintomatologia, eziologia, patogenesi ed epidemiologia. Essendo una malattia che colpisce soprattutto la parte epigea delle piante, le caratteristiche dei suoli non sono mai state considerate fra le responsabili della sua insorgenza e diffusione.

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

Delaying irrigation initiation linearly reduces yield with little impact on maturity in Pinot noir

When to initiate irrigation is a critical annual management decision that has cascading effects on grapevine productivity and wine quality in the context of climate change. A multi-site trial was begun in 2021 to optimize irrigation initiation timing using midday stem water potential (ψstem) thresholds characterized as departures from non-stressed baseline ψstemvalues (Δψstem). Plant material, vine and row spacing, and trellising systems were concomitant among sites, while vine age, soil type, and pruning systems varied. Five target Δψstem thresholds were arranged in an RCBD and replicated eight times at each site: 0.2, 0.4, 0.6, 0.8, and 1.0 MPa (T1, T2, T3, T4, and T5, respectively). When thresholds were reached, plots were irrigated weekly at 70% ETc. Yield components and berry composition were quantified at harvest. To better generalize inferences across sites, data were analyzed by ANOVA using a mixed model including site as a random factor. Across sites, irrigation was initiated at Δψstem = 0.24, 0.50, 0.65, 0.93, and 0.98 MPa for T1, T2, T3, T4, and T5, respectively. Consistent significant negative linear trends were found for several key yield and berry composition variables. Yield decreased by 12.9, 15.9, 19.5, and 27.4% for T2, T3, T4, and T5, respectively, compared to T1 (p < 0.0001) across sites that were driven by similarly linear reductions in berry weight (p < 0.0001). Comparatively, berry composition varied little among treatments. Juice total soluble solids decreased linearly from T1 to T5 – though only ranged 0.9 Brix (p = 0.012). Because producers are paid by the ton, and contracts simply stipulate a target maturity level, first-year results suggest that there is no economic incentive to induce moderate water deficits before irrigation initiation, regardless of vineyard site. Subsequent years will further elucidate the carryover effects of delaying irrigation initiation on productivity over the long term.

Use of pectinolytic yeast in wine fermentations

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input.