IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 How to transform the odor of a white wine into a red wine? Color it red!

How to transform the odor of a white wine into a red wine? Color it red!

Abstract

Does a white wine smell like red wine if you color it with red food coloring? A study by Morrot, Brochet, and Dubourdieu (2001, Brain and Language) suggests so. Subjects perceived red wine odors when tasting white wine that had been colored red. The perceived odor profile of the colored white wine became similar to that of a red wine. However, the forced-choice procedure used by Morrot et al. has some methodological shortcomings. Here, we used an alternative method (a rating procedure) to evaluate the presented wines. A white wine (Scheurebe) was presented a) in its original color and b) colored red by odorless food coloring. In addition, c) a red wine (a cuvée of pinot noir and dornfelder) was presented. In order to investigate the cause of the expected shift of the odor ratings for the red-colored white wine into the direction of a red wine profile, the three wines were additionally presented in black glasses, in which the color of the wine was not visible. This provided odor ratings uninfluenced by the color of the wines. We expected these ratings to show that some red wine odors are present in the white wine, but less intensely than in the red wine. As expected, the data showed that red wine odors were perceived more intensely in red-colored white wine than in uncolored white wine, compatible with the results by Morrot et al.The results also support the more general form of the hypothesis that an odor is enhanced by congruent colors and attenuated by incongruent colors. Additionally, the odor ratings of the wines presented in black glasses showed that some red wine aromas were present in the white wine, but less intense than in the red wine. We propose that the results can be understood in terms of attentional focusing. Numerous olfactory components are present in wine, some of them in red wines as well as in white wines. If a white wine is colored red, odors typical for red wine are perceived more intensively than in the uncolored white wine, because the red color directs attention to odor components associated with red wine. Selective attention could thus be an explanation for the influence of color on odor perception.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Twistel Gabriele1, Von Castell Christoph1 and Oberfeld-Twistel Daniel1

1Johannes Gutenberg-Universität Mainz, Department of Psychology

Contact the author

Keywords

sensory analysis, psychology, odor, experiment, color

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected. Several bitter compounds are already well-described in wines.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

Simulating the effect of heat waves on disease-resistant varieties

Agro-ecological transition and adaptation to climate change are the two major challenges facing modern agriculture.

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.