IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 How to transform the odor of a white wine into a red wine? Color it red!

How to transform the odor of a white wine into a red wine? Color it red!

Abstract

Does a white wine smell like red wine if you color it with red food coloring? A study by Morrot, Brochet, and Dubourdieu (2001, Brain and Language) suggests so. Subjects perceived red wine odors when tasting white wine that had been colored red. The perceived odor profile of the colored white wine became similar to that of a red wine. However, the forced-choice procedure used by Morrot et al. has some methodological shortcomings. Here, we used an alternative method (a rating procedure) to evaluate the presented wines. A white wine (Scheurebe) was presented a) in its original color and b) colored red by odorless food coloring. In addition, c) a red wine (a cuvée of pinot noir and dornfelder) was presented. In order to investigate the cause of the expected shift of the odor ratings for the red-colored white wine into the direction of a red wine profile, the three wines were additionally presented in black glasses, in which the color of the wine was not visible. This provided odor ratings uninfluenced by the color of the wines. We expected these ratings to show that some red wine odors are present in the white wine, but less intensely than in the red wine. As expected, the data showed that red wine odors were perceived more intensely in red-colored white wine than in uncolored white wine, compatible with the results by Morrot et al.The results also support the more general form of the hypothesis that an odor is enhanced by congruent colors and attenuated by incongruent colors. Additionally, the odor ratings of the wines presented in black glasses showed that some red wine aromas were present in the white wine, but less intense than in the red wine. We propose that the results can be understood in terms of attentional focusing. Numerous olfactory components are present in wine, some of them in red wines as well as in white wines. If a white wine is colored red, odors typical for red wine are perceived more intensively than in the uncolored white wine, because the red color directs attention to odor components associated with red wine. Selective attention could thus be an explanation for the influence of color on odor perception.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Twistel Gabriele1, Von Castell Christoph1 and Oberfeld-Twistel Daniel1

1Johannes Gutenberg-Universität Mainz, Department of Psychology

Contact the author

Keywords

sensory analysis, psychology, odor, experiment, color

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

El medio natural de Chile como factor de adaptación de la vid

Chile, junto con Australia, EE.UU., Sudáfrica, Argentina y Nueva Zelanda constituye el grupo de países del nuevo mundo vitivinícola. Todos ellos en conjunto han experimentado en la última década

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths.

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

Vineyard innovative tools based on the integration of earth observation services and in-field sensors (VitiGEOSS project)

Climate change is having an unprecedented impact on the wine industry, which is one of the major agricultural sectors around the world. Global warming, combined with the variation in rainfall patterns and the increase in frequency of extreme weather events, is significantly influencing vine physiology and exposing, more frequently, plants to severe biotic and abiotic stresses. This represents a challenge for viticulturists who need to take complex decisions to adjust vineyard management and achieve oenological goals.

Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Dans le cadre de recherches sur la mise en évidence et le déterminisme d’un «effet terroir »un réseau de parcelles du cépage Cabernet Franc greffé sur S04, a été suivi de 1979 à 1990 en Val de Loire (A.O.C. Saumur-Champigny, Chinon et Bourgueil). Des analyses chimiques (N,P, K, Ca, Mg, Fe, Mn, Zn) ont été réalisées sur le sol, les feuilles au stade véraison, les moûts en cours de maturation et à la vendange et enfin sur le vin, pour 18 sites (répartis dans 12unités terroirs de base) et 7 millésimes différents.