WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Posters 9 Red wine extract and resveratrol from grapevines could counteract AMD by inhibiting angiogenesis promoted by VEGF pathway in human retinal cells

Red wine extract and resveratrol from grapevines could counteract AMD by inhibiting angiogenesis promoted by VEGF pathway in human retinal cells

Abstract

Age-related macular degeneration (AMD) that is the main cause of visual impairment and blindness in Europe which is characterized by damages in the central part of the retina, the macula. This degenerative disease of the retina is mainly due to the molecular mechanism involving the production and secretion of vascular endothelial growth factor (VEF). Despite therapeutic advances thanks to the use of anti-VEGF, the progression of the disease is often observed without reverse vision quality. New therapies have emerged such as surgical pharmacological and special attention has been paid to prevention, where diet plays a preponderant role. Indeed, antioxidant such as resveratrol, a polyphenol of grapevines, can prevent VEGF secretion induced by stress from retinal cells. Resveratrol can not only reduce oxidative stress but also alter cellular and molecular signaling as well as physiological effects involved in ocular diseases such as AMD. In this context, we investigate the potential effect of red wine extract (RWE) on the secretion and its signaling pathway in human retinal cells ARPE-19. In order to investigate the effect of RWE in ARPE-19, a quantitative and qualitative analysis of the RWE was performed by HPLC MS/MS. We highlight that RWE are able to decreased whether the protein expression and the secretion of VEGF-A from ARPE-19 in a concentration-dependent manner. This alteration of VEGF-A production is associated with a decreased of VEGF-receptor2 (VEGF-R2) protein expression and its phosphorylated intracytoplasmic domain. Afterwards, kinase pathway activation is disturbing and RWE prevents the phosphorylation of MEK and ERK 1/2 in human retinal cells ARPE-19. According to our results, polyphenolic cocktails could present a potential interest in a prevention strategy against AMD.

Acknowledgments:

This work was supported by grants from the ANRT N°°2016/0003, by a French Government grant managed by the French National Research Agency under the program “Investissements d’Avenir”, reference ANR-11-LABX-0021, the Conseil Régional Bourgogne, Franche-Comte (PARI grant) and the FEDER (European Funding for Regional Economic Development), the “Bureau Interprofessionnel des Vins de Bourgogne” (BIVB), and by the Bordeaux Metabolome Facility and MetaboHUB (ANR-11-INBS-0010) project

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Clarisse CORNEBISE, Flavie Courtaut, Marie Taillandier-Coindard, Josep Valls-Fonayet, France, Tristan Richard, David Monchaud, Virginie Aires, Dominique Delmas

Presenting author

Clarisse CORNEBISE – Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France

Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France, Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France, Unité de Recherche Oenologie, EA 4577, USC 1366 INRA-ISVV, F-33882 Villenave d’Ornon, France, Unité de Recherche Oenologie, EA 4577, USC 1366 INRA-ISVV, F-33882 Villenave d’Ornon, France, Université de Bourgogne Franche-Comté, F-21000 Dijon, France; Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC, F-21078 Dijon, France, Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France, Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM; Centre Anticancéreux Georges François Leclerc, F-21000 Dijon, France; Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France

Contact the author

Keywords

Polyphenols, red wine extract, AMD, retinal cells, ARPE-19, degenerative diseases, ocular diseases

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Impacts on water availability for vitiviniculture worldwide using different potential evapotranspiration methods

Beyond the sole warming globally perceived and monitored, climate change impacts water availability. Increasing heatwaves frequency observed during the last decades

Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Grapevine vegetative multiplication allows the accumulation of spontaneous mutations and increase intra-cultivar genetic diversity that can be exploited to maintain grape wine quality

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds.

Arsenic in soil, leaves, grapes and wines

The presence of arsenic in food and beverages creates concern because of the toxicity of this element, classified as carcinogenic in humans. The arsenic concentration in soil, vine leaves and berries

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.