WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Posters 9 Red wine extract and resveratrol from grapevines could counteract AMD by inhibiting angiogenesis promoted by VEGF pathway in human retinal cells

Red wine extract and resveratrol from grapevines could counteract AMD by inhibiting angiogenesis promoted by VEGF pathway in human retinal cells

Abstract

Age-related macular degeneration (AMD) that is the main cause of visual impairment and blindness in Europe which is characterized by damages in the central part of the retina, the macula. This degenerative disease of the retina is mainly due to the molecular mechanism involving the production and secretion of vascular endothelial growth factor (VEF). Despite therapeutic advances thanks to the use of anti-VEGF, the progression of the disease is often observed without reverse vision quality. New therapies have emerged such as surgical pharmacological and special attention has been paid to prevention, where diet plays a preponderant role. Indeed, antioxidant such as resveratrol, a polyphenol of grapevines, can prevent VEGF secretion induced by stress from retinal cells. Resveratrol can not only reduce oxidative stress but also alter cellular and molecular signaling as well as physiological effects involved in ocular diseases such as AMD. In this context, we investigate the potential effect of red wine extract (RWE) on the secretion and its signaling pathway in human retinal cells ARPE-19. In order to investigate the effect of RWE in ARPE-19, a quantitative and qualitative analysis of the RWE was performed by HPLC MS/MS. We highlight that RWE are able to decreased whether the protein expression and the secretion of VEGF-A from ARPE-19 in a concentration-dependent manner. This alteration of VEGF-A production is associated with a decreased of VEGF-receptor2 (VEGF-R2) protein expression and its phosphorylated intracytoplasmic domain. Afterwards, kinase pathway activation is disturbing and RWE prevents the phosphorylation of MEK and ERK 1/2 in human retinal cells ARPE-19. According to our results, polyphenolic cocktails could present a potential interest in a prevention strategy against AMD.

Acknowledgments:

This work was supported by grants from the ANRT N°°2016/0003, by a French Government grant managed by the French National Research Agency under the program “Investissements d’Avenir”, reference ANR-11-LABX-0021, the Conseil Régional Bourgogne, Franche-Comte (PARI grant) and the FEDER (European Funding for Regional Economic Development), the “Bureau Interprofessionnel des Vins de Bourgogne” (BIVB), and by the Bordeaux Metabolome Facility and MetaboHUB (ANR-11-INBS-0010) project

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Clarisse CORNEBISE, Flavie Courtaut, Marie Taillandier-Coindard, Josep Valls-Fonayet, France, Tristan Richard, David Monchaud, Virginie Aires, Dominique Delmas

Presenting author

Clarisse CORNEBISE – Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France

Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France, Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France, Unité de Recherche Oenologie, EA 4577, USC 1366 INRA-ISVV, F-33882 Villenave d’Ornon, France, Unité de Recherche Oenologie, EA 4577, USC 1366 INRA-ISVV, F-33882 Villenave d’Ornon, France, Université de Bourgogne Franche-Comté, F-21000 Dijon, France; Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC, F-21078 Dijon, France, Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France, Université de Bourgogne Franche-Comté, Dijon, F-21000, France ; INSERM; Centre Anticancéreux Georges François Leclerc, F-21000 Dijon, France; Research Center U1231 – Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000, France

Contact the author

Keywords

Polyphenols, red wine extract, AMD, retinal cells, ARPE-19, degenerative diseases, ocular diseases

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Soil survey and chemical parameters evaluation in viticultural zoning

The most recent methodological developments in soil survey and land evaluation, that can be taken as reference in the viticultural field, go over usage of the GIS and database. These informatic tools, which begin to be widely utilised, consent to realise evaluations at different geographic scale and with different data quality and quantity in entrance.

Petiole phosphorus concentration is controlled by the rootstock genetic background in grapevine: is this a key for understanding rootstock conferred vigour?

Grapevine, Vitis vinifera, requires grafting on Phylloxera tolerant rootstocks of American origin in most viticultural areas of the world. The most commonly used species in rootstock creation are V. berlandieri, V. riparia and V. rupestris. Rootstocks not only provide tolerance to Phylloxera but assure the supply of water and mineral nutrients to the scion. The objective of this work was to determine to what extent rootstocks of different parentages alter the mineral composition of petioles of grapevine.

Freeze-thaw treatment to enhance phenolic ripening and tannin oxidation of seeds

Phenolic ripening represents a major interest for quality wine producers. Nevertheless, climatic or genotypical limitations can often prevent optimal maturation process. During winemaking seeds can be easily separated and technologically processed to improve their quality.

Sensory study of potential kokumi compounds in wine 

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the kokumi sensory concept (Yamamoto & Inui-Yamamoto 2023).

Recent observations in wine oxidation

The chemistry of wine oxidation is captured in the reactions between the oxidation products, mostly reactive electrophiles, with other wine constituents. An understanding of both components and their reactions can lead to ideas and techniques to control and mitigate or enhance these reactions to allow for the desired development of the wine. Current investigations are yielding much useful information about oxidation reactions in wine.