terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Abstract

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes. This technology is extremely gentle with molecules with sensory impact remaining unaffected compounds as terpenes, thiols, and anthocyanins, and protected of ulterior oxidations by the inactivation of oxidative enzymes (PPOs). The use of UHPH in must before fermentation is a powerful technology to eliminate wild microorganism and to facilitate the implantation of non-Saccharomyces inoculated as starters. In this work we show the efficient implantation of several weak-fermenter non-Saccharomyces and the effect on the release of volatile thiols.

Acknowledgements: This research was funded by MICIN, project PID2021-124250OB-I00.

References: 

1)  Morata, A. et al. (2020) Front. Nutr.7, 598286. https://doi.org/10.3389/fnut.2020.598286  

2)  Vaquero, C. et al. (2022) Food Bioprocess Technol. 15, 620–634. https://doi.org/10.1007/s11947-022-02766-8  

3)  Loira, I. et al. (2018) Innov. Food. Sci. Emerg. Technol. 50, 50–56. https://doi.org/10.1016/j.ifset.2018.10.005   

4)  Bañuelos, M.A. et al. (2020) Food Chem. 332, 127417. https://doi.org/10.1016/j.foodchem.2020.127417

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Antonio MORATA1*, Iris LOIRA1, Juan Manuel DEL FRESNO1, Carlos ESCOTT1, Felipe PALOMERO1, Carmen LÓPEZ1, Buenaventura GUAMIS2, Mª Antonia BAÑUELOS3, Cristian VAQUERO1, Carmen GONZÁLEZ1

1enotecUPM, Dept. Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, 208040; Madrid, Spain
2YPSICON ADVANCED TECHNOLOGIES S.L, Via Trajana 50-56 Nave 21, 08020, Barcelona, Spain
3enotecUPM, Dept. Biotechnology, ETSIAAB, Universidad Politécnica de Madrid, 208040; Madrid, Spain

Contact the author*

Keywords

UHPH, Implantation, non-Saccharomyces, Lachancea thermotolerans, terpenes, thiols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).