terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Abstract

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes. This technology is extremely gentle with molecules with sensory impact remaining unaffected compounds as terpenes, thiols, and anthocyanins, and protected of ulterior oxidations by the inactivation of oxidative enzymes (PPOs). The use of UHPH in must before fermentation is a powerful technology to eliminate wild microorganism and to facilitate the implantation of non-Saccharomyces inoculated as starters. In this work we show the efficient implantation of several weak-fermenter non-Saccharomyces and the effect on the release of volatile thiols.

Acknowledgements: This research was funded by MICIN, project PID2021-124250OB-I00.

References: 

1)  Morata, A. et al. (2020) Front. Nutr.7, 598286. https://doi.org/10.3389/fnut.2020.598286  

2)  Vaquero, C. et al. (2022) Food Bioprocess Technol. 15, 620–634. https://doi.org/10.1007/s11947-022-02766-8  

3)  Loira, I. et al. (2018) Innov. Food. Sci. Emerg. Technol. 50, 50–56. https://doi.org/10.1016/j.ifset.2018.10.005   

4)  Bañuelos, M.A. et al. (2020) Food Chem. 332, 127417. https://doi.org/10.1016/j.foodchem.2020.127417

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Antonio MORATA1*, Iris LOIRA1, Juan Manuel DEL FRESNO1, Carlos ESCOTT1, Felipe PALOMERO1, Carmen LÓPEZ1, Buenaventura GUAMIS2, Mª Antonia BAÑUELOS3, Cristian VAQUERO1, Carmen GONZÁLEZ1

1enotecUPM, Dept. Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, 208040; Madrid, Spain
2YPSICON ADVANCED TECHNOLOGIES S.L, Via Trajana 50-56 Nave 21, 08020, Barcelona, Spain
3enotecUPM, Dept. Biotechnology, ETSIAAB, Universidad Politécnica de Madrid, 208040; Madrid, Spain

Contact the author*

Keywords

UHPH, Implantation, non-Saccharomyces, Lachancea thermotolerans, terpenes, thiols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.