terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Abstract

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes. This technology is extremely gentle with molecules with sensory impact remaining unaffected compounds as terpenes, thiols, and anthocyanins, and protected of ulterior oxidations by the inactivation of oxidative enzymes (PPOs). The use of UHPH in must before fermentation is a powerful technology to eliminate wild microorganism and to facilitate the implantation of non-Saccharomyces inoculated as starters. In this work we show the efficient implantation of several weak-fermenter non-Saccharomyces and the effect on the release of volatile thiols.

Acknowledgements: This research was funded by MICIN, project PID2021-124250OB-I00.

References: 

1)  Morata, A. et al. (2020) Front. Nutr.7, 598286. https://doi.org/10.3389/fnut.2020.598286  

2)  Vaquero, C. et al. (2022) Food Bioprocess Technol. 15, 620–634. https://doi.org/10.1007/s11947-022-02766-8  

3)  Loira, I. et al. (2018) Innov. Food. Sci. Emerg. Technol. 50, 50–56. https://doi.org/10.1016/j.ifset.2018.10.005   

4)  Bañuelos, M.A. et al. (2020) Food Chem. 332, 127417. https://doi.org/10.1016/j.foodchem.2020.127417

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Antonio MORATA1*, Iris LOIRA1, Juan Manuel DEL FRESNO1, Carlos ESCOTT1, Felipe PALOMERO1, Carmen LÓPEZ1, Buenaventura GUAMIS2, Mª Antonia BAÑUELOS3, Cristian VAQUERO1, Carmen GONZÁLEZ1

1enotecUPM, Dept. Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, 208040; Madrid, Spain
2YPSICON ADVANCED TECHNOLOGIES S.L, Via Trajana 50-56 Nave 21, 08020, Barcelona, Spain
3enotecUPM, Dept. Biotechnology, ETSIAAB, Universidad Politécnica de Madrid, 208040; Madrid, Spain

Contact the author*

Keywords

UHPH, Implantation, non-Saccharomyces, Lachancea thermotolerans, terpenes, thiols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries.