terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Abstract

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes. This technology is extremely gentle with molecules with sensory impact remaining unaffected compounds as terpenes, thiols, and anthocyanins, and protected of ulterior oxidations by the inactivation of oxidative enzymes (PPOs). The use of UHPH in must before fermentation is a powerful technology to eliminate wild microorganism and to facilitate the implantation of non-Saccharomyces inoculated as starters. In this work we show the efficient implantation of several weak-fermenter non-Saccharomyces and the effect on the release of volatile thiols.

Acknowledgements: This research was funded by MICIN, project PID2021-124250OB-I00.

References: 

1)  Morata, A. et al. (2020) Front. Nutr.7, 598286. https://doi.org/10.3389/fnut.2020.598286  

2)  Vaquero, C. et al. (2022) Food Bioprocess Technol. 15, 620–634. https://doi.org/10.1007/s11947-022-02766-8  

3)  Loira, I. et al. (2018) Innov. Food. Sci. Emerg. Technol. 50, 50–56. https://doi.org/10.1016/j.ifset.2018.10.005   

4)  Bañuelos, M.A. et al. (2020) Food Chem. 332, 127417. https://doi.org/10.1016/j.foodchem.2020.127417

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Antonio MORATA1*, Iris LOIRA1, Juan Manuel DEL FRESNO1, Carlos ESCOTT1, Felipe PALOMERO1, Carmen LÓPEZ1, Buenaventura GUAMIS2, Mª Antonia BAÑUELOS3, Cristian VAQUERO1, Carmen GONZÁLEZ1

1enotecUPM, Dept. Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, 208040; Madrid, Spain
2YPSICON ADVANCED TECHNOLOGIES S.L, Via Trajana 50-56 Nave 21, 08020, Barcelona, Spain
3enotecUPM, Dept. Biotechnology, ETSIAAB, Universidad Politécnica de Madrid, 208040; Madrid, Spain

Contact the author*

Keywords

UHPH, Implantation, non-Saccharomyces, Lachancea thermotolerans, terpenes, thiols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.