terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

Abstract

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes. The aim was to identify the specific aroma glycosidic precursors responsible for this variability by confirming their structures and establishing correlations with the liberated aromas. The variability of aroma compounds with respect to both time and variety was investigated through a two-way ANOVA. A Principal Component Analysis of the volatile aromas confirmed the differences between grape varieties and hydrolysis time. The most notable differences were observed in the hydrolysates at 96 hours, where the accumulation of aromas such as norisoprenoids and phenols was prominent. A method involving Solid Phase Extraction followed by UHPLC-QTOF-MS/MS was employed to isolate and identify the pool of aroma precursors. Most of the glycosides identified based on their fragmentation patterns were indeed disaccharides with the structure of pentose-hexose and hexose-deoxyhexose. However, it should be noted that a few trisaccharides and monosaccharides were also identified in the study. The identification of some of these glycosides was further confirmed through direct correlation with the corresponding accumulated aroma compound. This study provides further evidence of the significant aromatic potential of winemaking grapes through their pool of aroma precursors, and it also suggests the possibility of exploring alternative methods for treating grapes to evaluate their aromatic potential.

Acknowledgements:

This work was funded by the Spanish Ministry of Science and Innovation (MICIN) (project AGL2017-87373-C3-1-R). E. S. A. has received a grant (PRE2018-084968) from the Spanish FPI programs associated to the same project. LAAE acknowledges the continuous support of Gobierno de Aragón (T29) and European Social Fund. 

References:

  1. Ferreira, V., & Lopez, R. (2019). The actual and potential aroma of winemaking grapes. Biomolecules, 9(12), 818. DOI 10.3390/biom9120818
  2. Loscos, N. et al. (2009). Comparison of the suitability of different hydrolytic strategies to predict aroma potential of different grape varieties. Journal of Agricultural and Food Chemistry, 57(6), 2468–2480. DOI 10.1021/jf803256e

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Elayma Sánchez-Acevedo, Marie Denat, Ignacio Ontañón, Ricardo Lopez, Vicente Ferreira

Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Associate Unit to Instituto de las Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), E-50009 Zaragoza, Spain

Contact the author*

Keywords

grapes, glycosidic precursors, fast fermentation, acid hydrolysis, wine aging, wine aroma

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.