terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

Abstract

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes. The aim was to identify the specific aroma glycosidic precursors responsible for this variability by confirming their structures and establishing correlations with the liberated aromas. The variability of aroma compounds with respect to both time and variety was investigated through a two-way ANOVA. A Principal Component Analysis of the volatile aromas confirmed the differences between grape varieties and hydrolysis time. The most notable differences were observed in the hydrolysates at 96 hours, where the accumulation of aromas such as norisoprenoids and phenols was prominent. A method involving Solid Phase Extraction followed by UHPLC-QTOF-MS/MS was employed to isolate and identify the pool of aroma precursors. Most of the glycosides identified based on their fragmentation patterns were indeed disaccharides with the structure of pentose-hexose and hexose-deoxyhexose. However, it should be noted that a few trisaccharides and monosaccharides were also identified in the study. The identification of some of these glycosides was further confirmed through direct correlation with the corresponding accumulated aroma compound. This study provides further evidence of the significant aromatic potential of winemaking grapes through their pool of aroma precursors, and it also suggests the possibility of exploring alternative methods for treating grapes to evaluate their aromatic potential.

Acknowledgements:

This work was funded by the Spanish Ministry of Science and Innovation (MICIN) (project AGL2017-87373-C3-1-R). E. S. A. has received a grant (PRE2018-084968) from the Spanish FPI programs associated to the same project. LAAE acknowledges the continuous support of Gobierno de Aragón (T29) and European Social Fund. 

References:

  1. Ferreira, V., & Lopez, R. (2019). The actual and potential aroma of winemaking grapes. Biomolecules, 9(12), 818. DOI 10.3390/biom9120818
  2. Loscos, N. et al. (2009). Comparison of the suitability of different hydrolytic strategies to predict aroma potential of different grape varieties. Journal of Agricultural and Food Chemistry, 57(6), 2468–2480. DOI 10.1021/jf803256e

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Elayma Sánchez-Acevedo, Marie Denat, Ignacio Ontañón, Ricardo Lopez, Vicente Ferreira

Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Associate Unit to Instituto de las Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), E-50009 Zaragoza, Spain

Contact the author*

Keywords

grapes, glycosidic precursors, fast fermentation, acid hydrolysis, wine aging, wine aroma

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Phenolic composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Grape and wine phenolic compounds have been shown to be highly related to both wine quality (color, flavor, and taste) and health-promoting properties (antioxidant and cardioprotective, among others). The aim of this work was to evaluate and compare the phenolic contents of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain vintage 2022. In addition, the phenolic profiles of the Portuguese wines from three vintages (2020, 2021, 2022) was compared.

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.