terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

Abstract

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes. The aim was to identify the specific aroma glycosidic precursors responsible for this variability by confirming their structures and establishing correlations with the liberated aromas. The variability of aroma compounds with respect to both time and variety was investigated through a two-way ANOVA. A Principal Component Analysis of the volatile aromas confirmed the differences between grape varieties and hydrolysis time. The most notable differences were observed in the hydrolysates at 96 hours, where the accumulation of aromas such as norisoprenoids and phenols was prominent. A method involving Solid Phase Extraction followed by UHPLC-QTOF-MS/MS was employed to isolate and identify the pool of aroma precursors. Most of the glycosides identified based on their fragmentation patterns were indeed disaccharides with the structure of pentose-hexose and hexose-deoxyhexose. However, it should be noted that a few trisaccharides and monosaccharides were also identified in the study. The identification of some of these glycosides was further confirmed through direct correlation with the corresponding accumulated aroma compound. This study provides further evidence of the significant aromatic potential of winemaking grapes through their pool of aroma precursors, and it also suggests the possibility of exploring alternative methods for treating grapes to evaluate their aromatic potential.

Acknowledgements:

This work was funded by the Spanish Ministry of Science and Innovation (MICIN) (project AGL2017-87373-C3-1-R). E. S. A. has received a grant (PRE2018-084968) from the Spanish FPI programs associated to the same project. LAAE acknowledges the continuous support of Gobierno de Aragón (T29) and European Social Fund. 

References:

  1. Ferreira, V., & Lopez, R. (2019). The actual and potential aroma of winemaking grapes. Biomolecules, 9(12), 818. DOI 10.3390/biom9120818
  2. Loscos, N. et al. (2009). Comparison of the suitability of different hydrolytic strategies to predict aroma potential of different grape varieties. Journal of Agricultural and Food Chemistry, 57(6), 2468–2480. DOI 10.1021/jf803256e

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Elayma Sánchez-Acevedo, Marie Denat, Ignacio Ontañón, Ricardo Lopez, Vicente Ferreira

Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Associate Unit to Instituto de las Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), E-50009 Zaragoza, Spain

Contact the author*

Keywords

grapes, glycosidic precursors, fast fermentation, acid hydrolysis, wine aging, wine aroma

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments.

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].